Specificity of the IgG antibody response to Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale MSP119 subunit proteins in multiplexed serologic assays
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Specificity of the IgG antibody response to Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale MSP119 subunit proteins in multiplexed serologic assays

Filetype[PDF-1.65 MB]


  • English

  • Details:

    • Alternative Title:
      Malar J
    • Description:
      Background

      Multiplex bead assays (MBA) that measure IgG antibodies to the carboxy-terminal 19-kDa sub-unit of the merozoite surface protein 1 (MSP119) are currently used to determine malaria seroprevalence in human populations living in areas with both stable and unstable transmission. However, the species specificities of the IgG antibody responses to the malaria MSP119 antigens have not been extensively characterized using MBA.

      Methods

      Recombinant Plasmodium falciparum (3D7), Plasmodium malariae (China I), Plasmodium ovale (Nigeria I), and Plasmodium vivax (Belem) MSP119 proteins were covalently coupled to beads for MBA. Threshold cut-off values for the assays were estimated using sera from US citizens with no history of foreign travel and by receiver operator characteristic curve analysis using diagnostic samples. Banked sera from experimentally infected chimpanzees, sera from humans from low transmission regions of Haiti and Cambodia (N = 12), and elutions from blood spots from humans selected from a high transmission region of Mozambique (N = 20) were used to develop an antigen competition MBA for antibody cross-reactivity studies. A sub-set of samples was further characterized using antibody capture/elution MBA, IgG subclass determination, and antibody avidity measurement.

      Results

      Total IgG antibody responses in experimentally infected chimpanzees were species specific and could be completely suppressed by homologous competitor protein at a concentration of 10 μg/ml. Eleven of 12 samples from the low transmission regions and 12 of 20 samples from the high transmission area had antibody responses that were completely species specific. For 7 additional samples, the P. falciparum MSP119 responses were species specific, but various levels of incomplete heterologous competition were observed for the non-P. falciparum assays. A pan-malaria MSP119 cross-reactive antibody response was observed in elutions of blood spots from two 20–30 years old Mozambique donors. The antibody response from one of these two donors had low avidity and skewed almost entirely to the IgG3 subclass.

      Conclusions

      Even when P. falciparum, P. malariae, P. ovale, and P. vivax are co-endemic in a high transmission setting, most antibody responses to MSP119 antigens are species-specific and are likely indicative of previous infection history. True pan-malaria cross-reactive responses were found to occur rarely.

      Electronic supplementary material

      The online version of this article (10.1186/s12936-018-2566-0) contains supplementary material, which is available to authorized users.

    • Pubmed ID:
      30413163
    • Pubmed Central ID:
      PMC6230236
    • Document Type:
    • Collection(s):
    • Main Document Checksum:
    • File Type:

    You May Also Like

    Checkout today's featured content at stacks.cdc.gov