Evolution of Zygotic Linkage Disequilibrium in a Finite Local Population
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Evolution of Zygotic Linkage Disequilibrium in a Finite Local Population

Filetype[PDF-2.05 MB]


  • Alternative Title:
    PLoS One
  • Personal Author:
  • Description:
    One crucial feature of zygotic linkage disequilibrium (LD) analysis is its direct use of diploid genotyping data, irrespective of the type of mating system. Previous theories from an evolutionary perspective mainly focus on gametic LD, but the equivalent development for zygotic LD is not available. Here I study the evolution of zygotic LD and the covariances between gametic and zygotic LDs or between distinct zygotic LDs in a finite local population under constant immigration from a continent population. I derive the analytical theory under genetic hitchhiking effects or in a neutral process. Results indicate that zygotic LDs (diploid level) are more informative than gametic LD (haploid level) in indicating the effects of different evolutionary forces. Zygotic LDs may be greater than or comparable to gametic LD under the epistatic selection process, but smaller than gametic LD under the non epistatic selection process. The covariances between gametic and zygotic LDs are strongly affected by the mating system, linkage distance, and genetic drift effects, but weakly affected by seed and pollen flow and natural selection. The covariances between different zygotic LDs are generally robust to the effects of gene flow, selection, and linkage distance, but sensitive to the effects of genetic drift and mating system. Consistent patterns exist for the covariances between the zygotic LDs for the two-locus genotypes with one common genotype at one locus or without any common genotype at each locus. The results highlight that zygotic LDs can be applied to detecting natural population history.
  • Document Type:
  • Collection(s):
  • Main Document Checksum:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at stacks.cdc.gov