High resolution mass spectrometry newborn screening applications for quantitative analysis of amino acids and acylcarnitines from dried blood spots
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

High resolution mass spectrometry newborn screening applications for quantitative analysis of amino acids and acylcarnitines from dried blood spots

Filetype[PDF-1.40 MB]


English

Details:

  • Alternative Title:
    Anal Chim Acta
  • Personal Author:
  • Description:
    Amino acid and acylcarnitine first-tier newborn screening typically employs derivatized or non-derivatized sample preparation methods followed by FIA coupled to triple quadrupole (TQ) MS/MS. The low resolving power of TQ instruments results in difficulties distinguishing nominal isobaric metabolites, especially those with identical quantifying product ions such as malonylcarnitine (C3DC) and 4-hydroxybutylcarnitine (C4OH). Twenty-eight amino acids and acylcarnitines extracted from dried blood spots (DBS) were analyzed by direct injection (DI)-HRMS on a Q-Exactive Plus across available mass resolving powers in SIM, in PRM at 17,000 full width at half maximum (FWHM), and a developed SIM/PRM hybrid MS method. Most notably, quantitation of C3DC and C4OH was successful by HRMS in non-derivatized samples, thus, potentially eliminating sample derivatization requirements. Quantitation differed between SIM and PRM acquired data for several metabolites, and it was determined these quantitative differences were due to collision energy differences or kinetic isotope effects between the unlabeled metabolites and the corresponding labeled isotopologue internal standards. Overall quantitative data acquired by HRMS were similar to data acquired on TQ MS/MS platform. A proof-of-concept hybrid DI-HRMS and SIM/PRM/FullScan method was developed demonstrating the ability to hybridize targeted newborn screening with metabolomic screening.
  • Subjects:
  • Source:
  • Pubmed ID:
    32475395
  • Pubmed Central ID:
    PMC10046147
  • Document Type:
  • Funding:
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at stacks.cdc.gov