In Vitro Effects of Arthrocen, an Avocado/Soy Unsaponifiables Agent, on Inflammation and Global Gene Expression in Human Monocytes
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


In Vitro Effects of Arthrocen, an Avocado/Soy Unsaponifiables Agent, on Inflammation and Global Gene Expression in Human Monocytes

Filetype[PDF-1.19 MB]


  • Alternative Title:
    Int J Chem
  • Description:
    Osteoarthritis (OA) is the most common form of arthritis. Symptomatically characterized by stiffness and pain, OA is a chronic degenerative disease of joints. Of note, there is growing interest in the potential use of plant-based compounds for symptomatic treatment of OA. Arthrocen is a plant-derived agent consisting of a one to two ratio of avocado and soy unsaponifiable extracts. In order to decipher the potential mechanisms of Arthrocen's action at the molecular level, we employed an | assay using cultured human THP-1 cells (a model cell line for monocytes) to study its effects. By pairing protein arrays enriched for inflammatory markers, transcriptomic pathway analysis using RNA-Sequencing, and eicosanoid specific lipidomics, we have begun to unravel its potential mechanism of action. Specifically, we found that Arthrocen can attenuate the inflammatory response at the transcript level while inducing significant changes in numerous cytokines. Furthermore, we discovered that while Arthrocen alone did not increase IL-8 or MCP-1 levels, its presence had a synergistic effect on the observed increase in response to LPS stimulation. Additionally, this synergistic effect of Arthrocen on LPS stimulation of IL-8 and MCP-1 protein levels was also observed at the mRNA level and suggests a regulatory mechanism at the transcriptional level. Interestingly, Arthrocen induced no changes in any of the eicosanoids studied. This multi-omics approach implies that Arthrocen functions at the level of gene transcription to dampen inflammation mediated by monocytes in OA.
  • Pubmed ID:
  • Pubmed Central ID:
  • Document Type:
  • Collection(s):
  • Main Document Checksum:
  • File Type:

You May Also Like

Checkout today's featured content at