Assessing Exposure to Atrazine and Its Metabolites Using Biomonitoring
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Assessing Exposure to Atrazine and Its Metabolites Using Biomonitoring

Filetype[PDF-195.01 KB]



Details:

  • Alternative Title:
    Environ Health Perspect
  • Description:
    Background

    Atrazine (ATZ) is the second most abundantly applied pesticide in the United States. When we assessed exposure to ATZ by measuring its urinary mercapturic acid metabolite, general population data indicated that < 5% of the population was exposed to ATZ-related chemicals (limit of detection < 0.8 ng/mL).

    Objectives

    The aim of our study was to determine if we were underestimating ATZ exposure by measuring its urinary mercapturic acid metabolite and if the urinary metabole profile changed with the exposure scenario.

    Methods

    We conducted a small-scale study involving 24 persons classified as high- (n = 8), low(n = 5), and environmental- (n = 11) exposed to ATZ. Using online solid phase extraction high performance liquid chromatography–tandem mass spectrometry, we measured nine ATZ-related metabolites in urine that included dealkylated, hydroxylated, and mercapturic acid metabolites.

    Results

    We found that the urinary metabolite profiles varied greatly among exposure scenarios and among persons within each exposure scenario. Although diaminochlorotriazine (DACT) appeared to be the predominant urinary metabolite detected in each exposure category, the variation in proportion of total ATZ metabolites among persons was consistently large, suggesting that one metabolite alone could not be measured as a surrogate for ATZ exposure.

    Conclusions

    We have likely been underestimating population-based exposures by measuring only one urinary ATZ metabolite. Multiple urinary metabolites must be measured to accurately classify exposure to ATZ and its environmental degradates. Regardless, DACT and desethylatrazine appear to be the most important metabolites to measure to evaluate exposures to ATZ-related chemicals.

  • Document Type:
  • Collection(s):
  • Main Document Checksum:
  • File Type:

You May Also Like

Checkout today's featured content at stacks.cdc.gov