Potential Explosion Hazard of Carbonaceous Nanoparticles: Explosion Parameters of Selected Materials
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners. As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
i

Potential Explosion Hazard of Carbonaceous Nanoparticles: Explosion Parameters of Selected Materials

Filetype[PDF-467.67 KB]



Details:

  • Alternative Title:
    J Hazard Mater
  • Personal Author:
  • Description:
    Following a previous explosion screening study, we have conducted concentration and ignition energy scans on several carbonaceous nanopowders: fullerene, SWCNT, carbon black, MWCNT, graphene, CNF, and graphite. We have measured minimum explosive concentration (MEC), minimum ignition energy (MIE), and minimum ignition temperature (MITcloud) for these materials. The nanocarbons exhibit MEC ~10(1)-10(2) g/m(3), comparable to the MEC for coals and for fine particle carbon blacks and graphites. The nanocarbons are confirmed mainly to be in the St-1 explosion class, with fullerene, at K(St) ~200 bar-m/s, borderline St-1/St-2. We estimate MIE ~ 10(2)-10(3) J, an order of magnitude higher than the MIE for coals but an order of magnitude lower than the MIE for fine particle graphites. While the explosion severity of the nanocarbons is comparable to that of the coals, their explosion susceptibility (ease of ignition) is significantly less (i.e., the nanocarbons have higher MIEs than do the coals); by contrast, the nanocarbons exhibit similar explosion severity to the graphites but enhanced explosion susceptibility (i.e., the nanocarbons have lower MIEs than do the graphites). MIT(cloud) > 550 °C, comparable to that of the coals and carbon blacks.
  • Subjects:
  • Source:
  • Pubmed ID:
    25913651
  • Pubmed Central ID:
    PMC4599873
  • Document Type:
  • Funding:
  • Volume:
    295
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at stacks.cdc.gov