Welcome to CDC stacks | Development of a job-exposure matrix for exposure to total and fine particulate matter in the aluminum industry - 30009 | CDC Public Access
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
Clear All Simple Search
Advanced Search
Development of a job-exposure matrix for exposure to total and fine particulate matter in the aluminum industry
  • Published Date:
    2014 Jan-Feb
  • Source:
    J Expo Sci Environ Epidemiol. 24(1):89-99.
Filetype[PDF-1.22 MB]

  • Pubmed ID:
  • Pubmed Central ID:
  • Description:
    Increasing evidence indicates that exposure to particulate matter (PM) at environmental concentrations increases the risk of cardiovascular disease, particularly PM with an aerodynamic diameter of less than 2.5 μm (PM(2.5)). Despite this, the health impacts of higher occupational exposures to PM(2.5) have rarely been evaluated. In part, this research gap derives from the absence of information on PM(2.5) exposures in the workplace. To address this gap, we have developed a job-exposure matrix (JEM) to estimate exposure to two size fractions of PM in the aluminum industry. Measurements of total PM (TPM) and PM(2.5) were used to develop exposure metrics for an epidemiologic study. TPM exposures for distinct exposure groups (DEGs) in the JEM were calculated using 8385 personal TPM samples collected at 11 facilities (1980-2011). For eight of these facilities, simultaneous PM(2.5) and TPM personal monitoring was conducted from 2010 to 2011 to determine the percent of TPM that is composed of PM(2.5) (%PM(2.5)) in each DEG. The mean TPM from the JEM was then multiplied by %PM(2.5) to calculate PM(2.5) exposure concentrations in each DEG. Exposures in the smelters were substantially higher than in fabrication units; mean TPM concentrations in smelters and fabrication facilities were 3.86 and 0.76 mg/m(3), and the corresponding mean PM(2.5) concentrations were 2.03 and 0.40 mg/m(3). Observed occupational exposures in this study generally exceeded environmental PM(2.5) concentrations by an order of magnitude.

  • Document Type:
  • Collection(s):
  • Funding:
    5R01 AG026291-06/AG/NIA NIH HHS/United States
    5R01OH009939-02/OH/NIOSH CDC HHS/United States
    R01 AG026291/AG/NIA NIH HHS/United States
    R01 OH009939/OH/NIOSH CDC HHS/United States
No Related Documents.
You May Also Like: