A Nanozyme- and Ambient Light-Based Smartphone Platform for Simultaneous Detection of Dual Biomarkers from Exposure to Organophosphorus Pesticides
-
2018/06/19
Details
-
Personal Author:
-
Description:A transparent, lateral-flow test strip coupled with a smartphone-based ambient light sensor was first proposed for detecting enzymatic inhibition and phosphorylation. The principle of the platform is based on the simultaneous measurement of the total amount of the enzyme and enzyme activity to biomonitor exposure to organophosphorus (OP) pesticides. In this study, butyrylcholinesterase (BChE) was adopted as the model enzyme and ethyl paraoxon was chosen as an analyte representing OP pesticides. The total amount of BChE was quantified by a sensitive colorimetric signal originating from a sandwich immunochromatographic assay utilizing PtPd nanoparticles as a colorimetric probe, which exhibited excellent catalytic activity for phenols. In the sandwich immunoassay, only one antibody against BChE was simultaneously utilized as the recognition antibody and the labeling antibody due to the tetrameric structure of native BChE. The BChE activity was estimated by another colorimetric signal using the Ellman assay. Both colorimetric signals on two separated test strips were detected by the smartphone-based ambient light sensor. The proposed sensor operated with an LED in a 3D-printed substrate, which emitted excitation light and transmitted it through a transparent, lateral-flow test strip. With the increase in the colorimetric signal in the test line of the test strip, the intensity of the transmitted light decreased. The smartphone-based sensor showed excellent linear responses for assaying the total amount of BChE and active BChE ranging from 0.05 to 6.4 nM and from 0.1 to 6.4 nM, respectively. A high portability and low detection limit were simultaneously realized in the common smartphone-based device. This low-cost, portable, easy-operation, and sensitive immunoassay strategy shows great potential for online detection of OP exposure and monitoring other disease biomarkers. [Description provided by NIOSH]
-
Subjects:
-
Keywords:
-
ISSN:0003-2700
-
Document Type:
-
Funding:
-
Genre:
-
Place as Subject:
-
CIO:
-
Topic:
-
Location:
-
Volume:90
-
Issue:12
-
NIOSHTIC Number:nn:20054345
-
Citation:Anal Chem 2018 Jun; 90(12):7391-7398
-
Contact Point Address:Dan Du, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
-
Email:annie.du@wsu.edu
-
Federal Fiscal Year:2018
-
NORA Priority Area:
-
Performing Organization:Washington State University
-
Peer Reviewed:True
-
Start Date:20150901
-
Source Full Name:Analytical Chemistry
-
End Date:20180831
-
Collection(s):
-
Main Document Checksum:urn:sha-512:2754277fba7cb831a8b97422d55e33aa8052f7b703cd6299f0bada53bf5b60226aefb99131522cd7239dff1a7dfed4f78182802c7ec9bc3749f2f2088198c780
-
Download URL:
-
File Type:
ON THIS PAGE
CDC STACKS serves as an archival repository of CDC-published products including
scientific findings,
journal articles, guidelines, recommendations, or other public health information authored or
co-authored by CDC or funded partners.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
You May Also Like