Characterization of the Emissions and Crystalline Silica Content of Airborne Dust Generated from Grinding Natural and Engineered Stones
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners. As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
i

Characterization of the Emissions and Crystalline Silica Content of Airborne Dust Generated from Grinding Natural and Engineered Stones

Filetype[PDF-1.27 MB]


English

Details:

  • Journal Article:
    Ann Work Expo Health
  • Personal Author:
  • Description:
    In this study, we systematically characterized the airborne dust generated from grinding engineered and natural stone products using a laboratory testing system designed and operated to collect representative respirable dust samples. Four stone samples tested included two engineered stones consisting of crystalline silica in a polyester resin matrix (formulations differed with Stones A having up to 90wt% crystalline silica and Stone B up to 50wt% crystalline silica), an engineered stone consisting of recycled glass in a cement matrix (Stone C), and a granite. Aerosol samples were collected by respirable dust samplers, total dust samplers, and a Micro-Orifice Uniform Deposit Impactor. Aerosol samples were analyzed by gravimetric analysis and x-ray diffraction to determine dust generation rates, crystalline silica generation rates, and crystalline silica content. Additionally, bulk dust settled on the floor of the testing system was analyzed for crystalline silica content. Real-time particle size distributions were measured using an Aerodynamic Particle Sizer. All stone types generated similar trimodal lognormal number-weighted particle size distributions during grinding with the most prominent mode at an aerodynamic diameter of about 2.0-2.3 μm, suggesting dust formation from grinding different stones is similar. Bulk dust from Stone C contained no crystalline silica. Bulk dust from Stone A, Stone B, and granite contained 60, 23, and 30wt% crystalline silica, respectively. In Stones A and B, the cristobalite form of crystalline silica was more plentiful than the quartz form. Only the quartz form was detected in granite. The bulk dust, respirable dust, and total dust for each stone had comparable amounts of crystalline silica, suggesting that crystalline silica content in the bulk dust could be representative of that in respirable dust generated during grinding. Granite generated more dust per unit volume of material removed than the engineered stones, which all had similar normalized dust generation rates. Stone A had the highest normalized generation rates of crystalline silica, followed by granite, Stone B, and Stone C (no crystalline silica), which likely leads to the same trend of respirable crystalline silica (RCS) exposure when working with these different stones. Manufacturing and adoption of engineered stone products with formulations such as Stone B or Stone C could potentially lower or eliminate RCS exposure risks. Combining all the effects of dust generation rate, size-dependent silica content, and respirable fraction, the highest normalized generation rate of RCS consistently occurs at 3.2-5.6 µm for all the stones containing crystalline silica. Therefore, removing particles in this size range near the generation sources should be prioritized when developing engineering control measures.
  • Subjects:
  • Keywords:
  • Source:
  • Pubmed ID:
    36219621
  • Pubmed Central ID:
    PMC9928769
  • Document Type:
  • Funding:
  • Volume:
    67
  • Issue:
    2
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at stacks.cdc.gov