CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
i
Embryonic atrazine exposure and later in life behavioral and brain transcriptomic, epigenetic, and pathological alterations in adult male zebrafish
-
6 2021
-
-
Source: Cell Biol Toxicol. 37(3):421-439
Details:
-
Alternative Title:Cell Biol Toxicol
-
Personal Author:
-
Description:Atrazine (ATZ), a commonly used pesticide linked to endocrine disruption, cancer, and altered neurochemistry, frequently contaminates water sources at levels above the US Environmental Protection Agency's 3 parts per billion (ppb; μg/L) maximum contaminant level. Adult male zebrafish behavior, brain transcriptome, brain methylation status, and neuropathology were examined to test the hypothesis that embryonic ATZ exposure causes delayed neurotoxicity, according to the developmental origins of health and disease paradigm. Zebrafish (Danio rerio) embryos were exposed to 0 ppb, 0.3 ppb, 3 ppb, or 30 ppb ATZ during embryogenesis (1-72 h post fertilization (hpf)), then rinsed and raised to maturity. At 9 months post fertilization (mpf), males had decreased locomotor parameters during a battery of behavioral tests. Transcriptomic analysis identified altered gene expression in organismal development, cancer, and nervous and reproductive system development and function pathways and networks. The brain was evaluated histopathologically for morphometric differences, and decreased numbers of cells were identified in raphe populations. Global methylation levels were evaluated at 12 mpf, and the body length, body weight, and brain weight were measured at 14 mpf to evaluate effects of ATZ on mature brain size. No significant difference in genome methylation or brain size was observed. The results demonstrate that developmental exposure to ATZ does affect neurodevelopment and neural function in adult male zebrafish and raises concern for possible health effects in humans due to ATZ's environmental presence and persistence. Graphical abstract.
-
Subjects:
-
Source:
-
Pubmed ID:32737625
-
Pubmed Central ID:PMC7855118
-
Document Type:
-
Funding:
-
Volume:37
-
Issue:3
-
Collection(s):
-
Main Document Checksum:
-
Download URL:
-
File Type: