CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
i
Biological effects of inhaled hydraulic fracturing sand dust VII. Neuroinflammation and altered synaptic protein expression
-
October 22 2020
-
-
Source: Toxicol Appl Pharmacol. 409:115300
Details:
-
Alternative Title:Toxicol Appl Pharmacol
-
Personal Author:
-
Description:Hydraulic fracturing (fracking) is a process used to recover oil and gas from shale rock formation during unconventional drilling. Pressurized liquids containing water and sand (proppant) are used to fracture the oil- and natural gas-laden rock. The transportation and handling of proppant at well sites generate dust aerosols; thus, there is concern of worker exposure to such fracking sand dusts (FSD) by inhalation. FSD are generally composed of respirable crystalline silica and other minerals native to the geological source of the proppant material. Field investigations by NIOSH suggest that the levels of respirable crystalline silica at well sites can exceed the permissible exposure limits. Thus, from an occupational safety perspective, it is important to evaluate the potential toxicological effects of FSD, including any neurological risks. Here, we report that acute inhalation exposure of rats to one FSD, i.e., FSD 8, elicited neuroinflammation, altered the expression of blood brain barrier-related markers, and caused glial changes in the olfactory bulb, hippocampus and cerebellum. An intriguing observation was the persistent reduction of synaptophysin 1 and synaptotagmin 1 proteins in the cerebellum, indicative of synaptic disruption and/or injury. While our initial hazard identification studies suggest a likely neural risk, more research is necessary to determine if such molecular aberrations will progressively culminate in neuropathology/neurodegeneration leading to behavioral and/or functional deficits.
-
Subjects:
-
Source:
-
Pubmed ID:33141058
-
Pubmed Central ID:PMC7758814
-
Document Type:
-
Funding:
-
Volume:409
-
Collection(s):
-
Main Document Checksum:
-
Download URL:
-
File Type:
Supporting Files
-
gif jpeg gif jpeg gif jpeg gif jpeg gif jpeg gif gif jpeg gif jpeg gif jpeg gif jpeg gif jpeg jpeg gif jpeg gif jpeg gif jpeg gif jpeg xml pdf gif jpeg gif jpeg gif jpeg