In vitro toxicity assessment of respirable solid surface composite sawing particles
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

In vitro toxicity assessment of respirable solid surface composite sawing particles

Filetype[PDF-1.21 MB]


  • English

  • Details:

    • Alternative Title:
      Toxicol Ind Health
    • Description:
      Solid surface composites (SSCs) are a class of popular construction materials composed of aluminum trihydrate and acrylic polymers. Previous investigations have demonstrated that sawing SSC releases substantial airborne dusts, with a number-based geometric mean diameter of 1.05 µm. We reported that in mice, aspiration exposure to airborne SSC dusts induced symptoms of pulmonary inflammation at 24-h postexposure: neutrophilic influx, alveolitis, and increased lactate dehydrogenase (LDH) and pro-inflammatory cytokine levels in lavage fluid. The particles appeared to be poorly cleared, with 81% remaining at 14-day postexposure. The objective of this study was to determine the toxicity specifically of respirable particles on a model of human alveolar macrophages (THP-1). The relative toxicities of subfractions (0.07, 0.66, 1.58, 5.0, and 13.42 µm diameter) of the airborne particles were also determined. THP-1 macrophages were exposed for 24 h to respirable particles from sawing SSC (0, 12.5, 25, 50, or 100 µg/ml) or size-specific fractions (100 µg/ml). Exposure to respirable SSC particles induced THP-1 macrophage toxicity in a dose-dependent manner. Viability was decreased by 15% and 19% after exposure to 50 and 100 µg/ml SSC, respectively, which correlated with increased cell culture supernatant LDH activity by 40% and 70% when compared to control. Reactive oxygen species (ROS) production and inflammatory cytokines were increased in a dose-dependent manner. A size-dependent cytotoxic effect was observed in the cells exposed to subfractions of SSC particles. SSC particles of 0.07, 0.66, and 1.58 µm diameter killed 36%, 17%, and 22% of cells, respectively. These results indicate a potential for cytotoxicity of respirable SSC particles and a relationship between particle size and toxicity, with the smallest fractions appearing to exhibit the greatest toxicity.
    • Pubmed ID:
      32379541
    • Pubmed Central ID:
      PMC7755294
    • Document Type:
    • Collection(s):
    • Main Document Checksum:
    • File Type:

    You May Also Like

    Checkout today's featured content at stacks.cdc.gov