Inactivation of the multi-drug-resistant pathogen Candida auris using ultraviolet germicidal irradiation
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners. As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
i

Inactivation of the multi-drug-resistant pathogen Candida auris using ultraviolet germicidal irradiation

Filetype[PDF-159.42 KB]


English

Details:

  • Alternative Title:
    J Hosp Infect
  • Personal Author:
  • Description:
    Background:

    Candida auris, a multi-drug-resistant fungal pathogen, has become an emerging threat in healthcare settings around the world. Reliable disinfection protocols specifically designed to inactivate C. auris are essential, as many chemical disinfectants commonly used in healthcare settings have been shown to have variable efficacy at inactivating C. auris.

    Aim:

    Ultraviolet germicidal irradiation (UVGI) was investigated as a method to inactivate clinically relevant strains of C. auris.

    Methods:

    Ten C. auris and two C. albicans isolates were exposed to ultraviolet (UV) energy to determine the UV dose required to inactivate each isolate. Using a UV reactor, each isolate (106 cells/mL) was exposed to 11 UV doses ranging from 10 to 150 mJ/cm2 and then cultured to assess cell viability.

    Findings:

    An exponential decay model was applied to each dose–response curve to determine inactivation rate constants for each isolate, which ranged from 0.108 to 0.176 cm2/mJ for C. auris and from 0.239 to 0.292 cm2/mJ for C. albicans. As the model of exponential decay did not accurately estimate the dose beyond 99.9% inactivation, a logistic regression model was applied to better estimate the doses required for 99.999% inactivation. Using this model, significantly greater UV energy was required to inactivate C. auris (103–192 mJ/cm2) compared with C. albicans (78–80 mJ/cm2).

    Conclusion:

    UVGI is a feasible approach for inactivating C. auris, although variable susceptibility among isolates must be taken into account. This dose–response data is critical for recommending UVGI dosing strategies to be tested in healthcare settings.

  • Subjects:
  • Source:
  • Pubmed ID:
    32283175
  • Pubmed Central ID:
    PMC7748379
  • Document Type:
  • Funding:
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at stacks.cdc.gov