Application of Phased Array Technology for Identification of Low Frequency Noise Sources - Summary
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
Clear All

Application of Phased Array Technology for Identification of Low Frequency Noise Sources - Summary

  • Published Date:


  • Source:
    Proceedings of the 13th International Conference on Low-Frequency Noise and Vibration and Its Control, Tokyo, Japan, October 21-23, 2008. Tokyo, Japan: Institute of Noise Control Engineering of Japan, 2008 Oct; :88-96
  • Language:
Filetype[PDF-419.41 KB]

  • Description:
    Noise Induced Hearing Loss (NIHL) is the most common occupational disease in the U.S. with devastating consequences particularly in the mining industry. A study conducted by the National Institute for Occupational Safety and Health (NIOSH) revealed that 90% of coal miners have hearing impairment by age 50, compared to only 10% of those not exposed to occupational noise. According to the Mine Safety and Health Administration (MSHA), Continuous Mining Machine (CM) operators account for 30% of workers exposed to noise doses exceeding the Permissible Exposure Level (PEL). This number becomes more dramatic considering that 49% of the total national underground coal production is extracted using these machines. In this context, NIOSH is conducting research to identify and control dominant noise sources in CMs. Previous noise source identification was performed using a Brüel &Kjær (B&K) 1.92-m diameter, 42-microphone phased array. These measurements revealed that the impacts from the conveyor chain onto the tail roller, and the impacts from the conveyor chain onto the upper deck are the dominant noise sources at the tail-section of the CM. The objectives of the work presented in this paper were: 1) To rank the noise radiated by the different sections of the conveyor, and 2) to determine the effect of a urethane-coated tail roller on the noise radiated by the tail-section. This test was conducted using an Acoustical and Vibrations Engineering Consultants (AVEC) 3.5-m diameter, 121-microphone phased array. The results from this new test show that a urethane-coated tail roller yields reductions in the tail-section of 2 to 8 dB in Sound Pressure Level in the frequency range of 1 kHz to 5 kHz. However, integration of the acoustic maps shows that the front-section and mid-section of the conveyor also contain dominant noise sources. Therefore, a urethane-coated tail roller in combination with a chain with urethane-coated flights that reduces the noise sources in the front and mid sections of the conveyor is required toyield a significant noise reduction on the CM operator’s overall exposure. These results show the applicability of phased array technology for low frequency noise source identification.
  • Subject:
  • Document Type:
  • Main Document Checksum:
  • File Type:
  • Supporting Files:
    No Additional Files
No Related Documents.

You May Also Like: