Subsidence Prediction Using a Laminated, Boundary-Element Program
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Subsidence Prediction Using a Laminated, Boundary-Element Program

Filetype[PDF-665.94 KB]


  • English

  • Details:

    • Description:
      Historically, the surface subsidence over underground coal mines has been predicted using empirical profile or influence functions which have little or no connection to the actual mechanics of the subsidence- Without a mechanistic basis, establishing the exact site-specific parameters to use in these empirical methods has been problematic. A practical subsidence predictive method based on mechanics has the appealing capability of allowing the determination of site-specific parameters from fundamental properties of the overburden with minimal field calibration work. This paper presents a case study where a mechanics-based, boundary-element program is used to calculate the surface subsidence associated with several panels of a Northern Appalachian longwall coal mine. The program used in this case study is called LAMODEL, and it incorporates a frictionless, laminated overburden into a general purpose displacement-discontinuity code primarily designed for calculating the stresses and displacements in coal mines or other thin seam or vein type deposits. In this paper. the program is used to calculate both the underground convergence and the resulting surface subsidence at three longwalls. The subsidence results from the model are compared with field measurements and analyzed The results from the case study in this paper demonstrate that the laminated model with calibrated properties can easily provide fairly accurate subsidence predictions and is fairly flexible for fitting measured subsidence. However, additional subsidence predictive case studies are recommended in order to ultimately evaluate the potential of the laminated overburden model for practical subsidence prediction
    • Subject:
    • Document Type:
    • Main Document Checksum:
    • File Type:

    Supporting Files

    • No Additional Files

    More +

    You May Also Like

    Checkout today's featured content at stacks.cdc.gov