Welcome to CDC Stacks | Rock Mechanics Study Of Lateral Destressing For The Advance-And-Relieve Mining Method - 9476 | National Institute for Occupational Safety and Health
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
Help
Clear All Simple Search
Advanced Search
Rock Mechanics Study Of Lateral Destressing For The Advance-And-Relieve Mining Method
  • Published Date:
    0/1/1900
Filetype[PDF - 1.66 MB]


Details:
  • Description:
    The advance-and-relieve method benefits from lateral destressing associated with mining in laminated rocks and a high horizontal stress regime. This stress control method is based on measurements showing that occurrence of rock failure in the roof and floor of an entry (or caving of roof strata in a panel gob) results in redistribution of stresses in adjacent entries. By locating other entries within the shadow zone of the first entry (or gob), improvements in stability can be achieved. Numerical modeling proved useful in studying the basic mechanics of lateral relief while investigating the sensitivity of results to different geologic and mining parameters using controlled experiments. It was shown that failure of rocks near an entry results in redistribution of horizontal stress and shifting of the stress to higher horizons. Measurements from two mines are consistent in showing significant horizontal stress reductions in comparison with the far-field stress regime within the destressed zone. Although the far-field stress regime is very anisotropic, these measurements show near-equal secondary principal horizontal stresses, or perhaps a switch in orientation, as a result of destressing. Stress relief is achieved through lateral movement and relaxation of rocks along weak bedding planes toward adjacent caved zones (or softened zone). Because of cave geometry in the advancing panel, horizontal stress concentrations occur near the cave line both in front of the face and to the sides. The horizontal stress concentration reaches 1.7 times the far-field stress ahead of the face. This stress increase is significant and may cause structural damage in this zone benefiting from additional support. In the next advancing panel located within the shadow zone of the gob, horizontal stresses are significantly reduced in the roof (by 50%). Thus, the stability of future advancing panel can be improved through prudent layout designs and sequencing. The width of the relief zone is significantly influenced by the height of the softened (or cave zone) and rock mass properties.

  • Supporting Files:
    No Additional Files