Assessment of respirator fit capability test criteria for full-facepiece air-purifying respirators
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Assessment of respirator fit capability test criteria for full-facepiece air-purifying respirators

Filetype[PDF-507.79 KB]


  • English

  • Details:

    • Alternative Title:
      J Occup Environ Hyg
    • Description:
      An ASTM International subcommittee on Respiratory Protection, F23.65 is currently developing a consensus standard for assessing respirator fit capability (RFC) criteria of half-facepiece air-purifying particulate respirators. The objective of this study was to evaluate if the test methods being developed for half-facepiece respirators can reasonably be applied to nonpowered full-facepiece-air-purifying respirators (FF-APR). Benchmark RFC test data were collected for three families of FF-APRs (a one-size-only family, a two-size family, and a three-size family). All respirators were equipped with P100 class particulate filters. Respirators were outfitted with a sampling probe to collect an in-mask particle concentration sample in the breathing zone of the wearer. Each of the six respirator facepieces was tested on the National Institute for Occupational Safety and Health 25-subject Bivariate Panel. The RFC test assessed face seal leakage using a PortaCount fit test. Subjects followed the corresponding Occupational Safety and Health Administration-accepted fit test protocol. Two donnings per subject/respirator model combination were performed. The panel passing rate (PPR) (number or percentage of subjects in the panel achieving acceptable fit on at least one of two donnings) was determined for each respirator family at specified fit factor passing levels of 500, 1,000, and 2,000. As a reasonable expectation based on a previous analysis of alpha and beta fit test errors for various panel sizes, the selected PPR benchmark for our study was >75%. At the fit factor passing level of 500 obtained on at least one of two donnings, the PPRs for three-, two-, and one-size families were 100, 79, and 88%, respectively. As the fit factor passing criterion increased from 500 to 1,000 or 2,000, PPRs followed a decreasing trend. Each of the three tested families of FF-APRs are capable of fitting ≥75% of the intended user population at the 500 fit factor passing level obtained on at least one of two donnings. The methods presented here can be used as a reference for standards development organizations considering developing RFC test requirements.
    • Pubmed ID:
      31107187
    • Pubmed Central ID:
      PMC6719699
    • Document Type:
    • Collection(s):
    • Main Document Checksum:
    • File Type:

    You May Also Like

    Checkout today's featured content at stacks.cdc.gov