Real-Time Estimation of Elemental Carbon Emitted from a Diesel Engine
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Real-Time Estimation of Elemental Carbon Emitted from a Diesel Engine

Filetype[PDF-316.87 KB]


  • Description:
    New Mining Safety and Health Administration (MSHA) regulations limit the mass concentration of airborne diesel particulate matter (DPM) or, more specifically, the concentration of elemental carbon (EC), in underground mines. The mine operators are responding by introducing a variety of controls to reduce DPM in the mines, potentially including the evaluation of new maintenance procedures to reduce underground mine vehicle emissions. There is currently a lack of an inexpensive and dependable method to directly measure the DPM concentration emitted from the vehicle tailpipe. To that end, this work demonstrated a simple field portable method for estimating the mass concentration of elemental carbon exiting the tailpipe of a diesel engine using a direct reading photometer. Simultaneous measurements of tailpipe exhaust were made with a Thermo Electron Personal DataRAM 1200 photometer (particulate mass concentration based on light scattering) and by analyzing PM2.5 and PM1.0 samples collected on quartz fiber filters using the National Institute of Occupational Safety and Health (NIOSH) method 5040 (mass concentration of EC via thermal-optical method). Results indicate surprisingly good correlation (R2 ) 0.97) of the two methods when the data are adjusted for relative humidity (RH) and corrected using an empirically generated calibration factor. Although preliminary, it may be possible to implement this method in maintenance shops to monitor emission trends and to compare emissions of various vehicles in a fleet. Such data will be useful for fleet planning to meet new air quality standards.
  • Subjects:
  • Collection(s):
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at