The Evolution Of Intelligent Coal Pillar Design: 1981-2006; 25th International Conference on Ground Control in Mining
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

The Evolution Of Intelligent Coal Pillar Design: 1981-2006; 25th International Conference on Ground Control in Mining

  • 2007

  • Source: Proceedings of the 25th International Conference on Ground Control in Mining, August 1-3, 2006, Morgantown, West Virginia. Peng SS, Mark C, Finfinger GL, Tadolini S, Khair AW, Heasley KA, Luo Y, eds. Morgantown, WV: West Virginia University, 2006 Aug; :325-334
Filetype[PDF-663.10 KB]


  • English

  • Details:

    • Personal Author:
    • Description:
      The first International Conference on Ground Control in Mining opened with the topic of pillar design. Two classic papers were presented, one by Bieniwski and the other by Wilson. Unfortunately, the two methods were so radically different from each other that it was nearly impossible to reconcile them. Adding to the confusion were the many other pillar strength formulas (such as the Salamon-Munro, the Holland-Gaddy, and the Obert-Duvall, just to name a few) that were also available. Little wonder that discussions of pillar design in those days often ended with anguished cries of but which formula is the right one? The past 25 years have seen substantial progress in the science of coal pillar design. Indeed, one testament to the improvement is the relative scarcity of papers on the topic at recent Conferences. Two factors have been largely responsible for the progress that has been made. The first has been the collection of large data bases of actual case histories of pillar performance in a variety of settings, from shallow room-and-pillar mines through deep cover longwalls. These have made possible the development of empirical design procedures that are closely linked to real world experience. The second important factor is the development of sophisticated computer models that can accurately simulate pillar behavior and roof/pillar/floor interactions. Together, these two lines of research have led to a new understanding of pillar mechanics that identifies three modes of pillar failure: Sudden, massive collapse, accompanied by airblast, for slender pillars (width/height<4) Squeezing, or slow, non-violent failure, for most room and pillar applications (410) It is particularly satisfying that the insights gained from numerical models broadly support those obtained from the empirical studies. While far less controversial than in the past, pillar design problems continue to arise. One recent example is pillar design for highwall mining. NIOSH has just released a software package, called ARMPS-HWM, which employs a number of modern pillar design concepts. Since highwall mining web pillars are long and slender, the greatest danger is that of a sudden collapse. ARMPS-HWM suggests two possible prevention strategies, one which
    • Subject:
    • Document Type:
    • Main Document Checksum:
    • File Type:

    Supporting Files

    • No Additional Files

    More +

    You May Also Like

    Checkout today's featured content at stacks.cdc.gov