Welcome to CDC Stacks | Investigation Of The Jacking Force Capability Of Tunnel Liners - 9020 | National Institute for Occupational Safety and Health
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
Clear All Simple Search
Advanced Search
Investigation Of The Jacking Force Capability Of Tunnel Liners
  • Published Date:
Filetype[PDF - 1.13 MB]

  • Description:
    Steel liner plates, which are bolted together to form a shell, are commonly used to provide temporary protective linings in the tunneling industry to ensure the stability of the tunnel and safety of the workers until more permanent ground reinforcement can be installed. As the ground deforms to try and close the opening, the liner plate is radially stressed, and by deforming redistributes these loads back to the surrounding insitu earth. Grouting behind the plates is done to fill any voids and ensure uniform contact to the strata around the back of the plates. Another function of the liner plate in some applications is to act as a platform or structure for the mining machine to react against in order to develop the necessary forward thrust to be able to excavate the face. In this case, the liner plates are loaded axially as a horizontal column of bolted liner plate rings, creating a jacking force against the liner plate assembly. In general, the buckling strength of the plate sections determines the jacking force capacity. Historically, the jacking force capacity of tunnel liner plates has been theoretically determined by some simplistic equations developed from tests of single liner plates. Recently, full-scale tests on a complete circular section of bolted liner plate ring segments have been conducted in the NIOSH Safety Structures Testing Laboratory using the unique Mine Roof Simulator to apply controlled loading in a manner that simulates the real world environment. Due to the unique size and capacity of the Mine Roof Simulator, these are believed to be the first full-scale tests conducted on the jacking force capability of tunnel liner plate rings. These tests indicate that the previously used theoretical equations tend to over predict the jacking force capacity of these tunnel liner plates. Unanticipated deformations in the field have been observed at loads below these theoretical design loads, therefore, a more accurate determination of the jacking force capability was needed. This report summarizes the full-scale test results, examines design parameters that impact the jacking force capability, and develops new mathematical models to improve the prediction of design loads.

  • Supporting Files:
    No Additional Files