Welcome to CDC stacks |
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
Clear All Simple Search
Advanced Search
CO Dispersion From A Coal Fire In A Mine Entry
  • Published Date:
  • Source:
    Proceedings of the 11th U.S./North American Mine Ventilation Symposium, University Park, Pennsylvania, June 5-7, 2006. Mutmansky JM, Ramani RV. eds., London, U.K.: Taylor & Francis Group, 2006 Jun; :511-517
  • Language:
Filetype[PDF-337.20 KB]

  • Description:
    Five mine fire experiments were conducted in a 2.08m high and 2.90m wide, ventilated mine entry in the National Institute for Occupational Safety and Health (NIOSH)'s Safety Research Coal Mine (SRCM) to determine the effect of the dispersion of carbon monoxide (CO) on mine fire detection. CO measurements were made at distances from 7.6 m to 45.2 m downwind from the fire with diffusion mode CO sensors positioned near the roof. For small intensity fires, less than 30 kW heat release rate, generated by 14 kg coal in a 0.61 m square tray, it was determined that air flow and sensor spacing were significant for fire detection at the 10 ppm CO alarm level. Within 15.0 m downwind distance from the fire, 10 ppm CO alarm values occurred for volumetric air flows less than 11.5 m3/s. However, the 10 ppm CO alarm value did not occur 30.0 m downwind from the fire for air quantities greater than 6.2 m3/s due to dilutive mixing of the CO in the air stream. The criterion that the mine fire alarms occur within 15 min of the onset of flaming combustion could not be consistently met with the 10 ppm CO alarm. This suggests the use of lower CO alarm values, or reduced CO sensor spacings for mine fire protection. It is demonstrated how computational fluid dynamics (CFD) can be used to model the CO dispersion downwind from the fire in support of a plan to optimize sensor spacings.
  • Subject:
  • Document Type:
  • Main Document Checksum:
  • Supporting Files:
    No Additional Files
No Related Documents.
You May Also Like: