An Evaluation of Statistical Methods for Analyzing Follow-Up Gaussian Laboratory Data with a Lower Quantification Limit
Supporting Files
-
2015
-
File Language:
English
Details
-
Alternative Title:J Biopharm Stat
-
Personal Author:
-
Description:Laboratory data with a lower quantification limit (censored data) are sometimes analyzed by replacing non-quantifiable values with a single value equal to or less than the quantification limit, yielding possibly biased point estimates and variance estimates that are too small. Motivated by a three-period, three-treatment crossover study of a candidate vaginal microbicide in human immunodeficiency virus (HIV)-infected women, we consider four analysis methods for censored Gaussian data with a single follow-up measurement: nonparametric methods, mixed models, mixture models, and dichotomous measures of a treatment effect. We apply these methods to the crossover study data and use simulation to evaluate the statistical properties of these methods in analyzing the treatment effect in a two-treatment parallel-arm or crossover study with censored Gaussian data. Our simulated data and our mixed and mixture models consider treated follow-up data with the same variance as the baseline data or with an inflated variance. Mixed models have the correct type I error, the best power, the least biased Gaussian parameter treatment-effect estimates, and appropriate confidence interval coverage for these estimates. A crossover study analysis with a period effect can greatly increase the required study sample size. For both designs and both variance assumptions, published sample-size estimation methods do not yield a good estimate of the sample size to obtain the stated power.
-
Subjects:
-
Source:J Biopharm Stat. 25(4):812-829
-
Pubmed ID:24906060
-
Pubmed Central ID:PMC6880227
-
Document Type:
-
Funding:
-
Volume:25
-
Issue:4
-
Collection(s):
-
Main Document Checksum:urn:sha256:c4e260e23a01b591e1c8712a9b8e1efc70a87e54d2e965e034be3d35e169ccc2
-
Download URL:
-
File Type:
Supporting Files
File Language:
English
ON THIS PAGE
CDC STACKS serves as an archival repository of CDC-published products including
scientific findings,
journal articles, guidelines, recommendations, or other public health information authored or
co-authored by CDC or funded partners.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
You May Also Like
COLLECTION
CDC Public Access