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Statistical methods
The statistical methods used in the manuscript should be familiar, except for the Schouten-Kester [1] analysis for the AB:BA crossover study design.  They assume no loss to follow-up.  Define a measure of successful treatment; in our analyses, it would be a specified change from baseline to follow-up during a treatment regimen.  Let pA and pB be the observed probabilities of a “success” during treatments A and B, respectively.  The numerator of their test statistic is the average of Δ = pA – pB over the treatment sequences.  They compute an estimate of the variance of Δ and propose computing a confidence interval for the underlying difference in proportions under the assumption that Δ has a Gaussian distribution.  If the period effect is additive, Δ removes the period effect because it is defined as the difference between a measure in the two treatment sequences.  
Carraguard trial data
The numbers and percents of comparisons with a meaningful decrease (a decrease of at least 0.5 on the log10 scale if both results are quantifiable, a decrease from quantifiable from quantifiable to nonquantifiable [NQ], or if undetectable [ND] results are separated from NQ assay results, a decrease from NQ
to ND)  are in Supplementary Table 1. 

Assessment of the distribution of the CVL HIV values
We evaluated whether the log10 CVL HIV quantifiable assay values had a Gaussian distribution by creating normal probability plots and computing test statistics based on the empirical distribution function.  Let Q be the lower quantification limit of these values, and let F be cumulative Gaussian probability distribution.  Then G, the distribution of the quantifiable values, is 

G(x) = F(x) / (1 – F(Q))  


Assume we have n values yi, ordered so that the yi  are increasing.  The ith quantile corresponding to yi is pi = (i – 0.5)/n (slightly different definitions are also used) [2].  For an arbitrary distribution F, the probability plot is a plot of the yi  against F-1(pi); a straight line indicates that the assumption that the yi have distribution F is appropriate.  Note that

G-1(x) = F-1(x) (1 – F(Q))   
since


G(G-1(x)) = F(F-1(x) / (1 – F(Q)) ) (1 – F(Q))  = F(F-1(x)) = x 

Therefore, we can create a normal probability plot of the quantifiable values from the standard software (which estimates the mean and standard deviation of the Gaussian distribution), despite the fact that data in the left tail are deleted; this truncation changes the slope of a straight line fit to the data.  


We used PROC UNIVARIATE (SAS version 9.1) to compute p-values for the fit of the log10 quantifiable values to a Gaussian distribution at the start of each cycle and the PROBPLOT statement in this procedure to obtain the normal probability plots of the these values, with the best fitting straight line for each plot.  D’Agostino [3] states that the Shapiro-Wilk and Anderson-Darling tests appear to have the best power, with the Shapiro-Wilk test having better power; he recommends that the Kolmogorov-Smirnov text never be used as a result of poor power.

The p-values in Supplementary Table 2 show that the Gaussian assumption is appropriate at the start of cycles 1 and 3.  Figure 1 shows that the small p-value from the Shapiro-Wilk statistic for the Gaussian assumption at the start of cycle 2 is likely a result of the smallest and largest log10 assay values being outliers.  Therefore, we regard the Gaussian assumption to be plausible. 

Supplementary Table 3 shows the agreement between the numbers of quantifiable values predicted by mixed models assuming equal variances with the corresponding numbers of observed values, by treatment.  The percent agreement is generally better for the model using only the day 7 data, especially with the Carraguard treatment.


Supplementary Table 4 summarizes the results of fitting mixed models with period effects, assuming equal variances, to the Carraguard data.  The likelihood ratio test statistics, p-values, coefficient estimates, and standard errors of these estimates are very similar to the corresponding values for the models without period effects in Table 2 of the manuscript.
Simulations

Justification of parameter values used in the simulations
The difference of 0.7 between the third quantile and median values at the start of cycle one (Table 1 of the manuscript) gives an estimated standard deviation of 1.0 for the distribution of log10 HIV values; the corresponding differences at the start of cycles two and three are similar. The correlations between the HIV-1 RNA values at the start of cycles one and two, one and three, and two and three are 0.6, 0.5, and 0.7, respectively. Of the Carraguard and placebo gel values on day seven during individual cycles (data not shown), only the Carraguard group during cycle one has a quantifiable median (2.00); the third quartile value of 3.00 gives an estimated standard deviation of this distribution to be 1.5.


Supplementary Table 5 shows the predicted probability of an NQ value by baseline mean at baseline and follow-up, if treatment reduces the mean by 0.5.  Note the small probability of an NQ value at baseline with a baseline mean of 4.0; a substantial proportion of simulations with this baseline mean will have only quantifiable values, making it impossible to fit a mixture model.

Parallel design


Supplementary Table 6 shows the sizes of tests using simulated parallel design data (based on simulations with no treatment effect) at the 5% significance level.  Nearly all the mixture models using the likelihood L1 have unacceptably large sizes, as do the models using the likelihood L2 with increased variance of the treated values.  We consider only the mixture models using the likelihood L2 with variance unaffected by treatment.

Supplementary Table 7 shows the median Gaussian treatment effect estimates and median standard errors of these estimates for the mixed models and mixture models.  When the variance of the treated values is unaffected by treatment, the mixed models yield nearly unbiased median treatment effects; the median standard errors increase somewhat as the baseline mean decreases.  When the variance of the treated values σTrt is increased by treatment, the mixed model allowing unequal variances gives somewhat biased median treatment effects, with bias increasing as the baseline mean decreases; the median standard errors are similar to those from data with σTrt unaffected by treatment.  In general, the mixture models give severely biased treatment effect estimates.

Supplementary Table 8 shows the coverage of 95% confidence intervals for the Gaussian treatment effect estimates.  The mixed models with the appropriate assumption  on σTrt  have appropriate coverage except for a baseline mean of 2.0 and σTrt = 1.4.
Crossover design

Supplementary Table 9 shows the sizes of tests at a 5% significance level.  One mixed model has an inflated size; the only mixture model with appropriate size is the model with equal variances using the likelihood L2 when the variance of the simulated data is not affected by treatment.


Supplementary Table 10 shows the median estimated Gaussian treatment effects and the corresponding median standard errors for the mixed models and mixture models.  For the mixed models, the median estimated coefficients are nearly unbiased (if the variance of the data are affected by treatment, this is true if the model allows different variances); the median standard errors increase as the baseline mean decreases.  The median treatment effect estimates have a large positive bias for the mixture model.


Supplementary Table 11 shows the coverage of 95% confidence intervals for the Gaussian treatment effect estimates.  The mixed models have appropriate coverage (allowing for different variance parameters if variance is affected by treatment in the data); the sole exception is the mixed model fit to both baseline and follow-up data when the simulated data have increased variance of the treated values.

Our simulations show that a period effect reducing the mean values in period two reduces the power to detect a treatment effect using a mixed model, In order to understand the reason for this reduction in power, Supplementary Table 12 shows medians and intraquartile ranges for treatment effect estimates, standard errors of these estimates, and the Wald chi-square statistics computed from these estimates for values of the period effects.  When the standard deviation of the observed values is not affected by treatment, use of baseline data in the mixed models reduces power (main article, Table 5).  The models using only follow-up data yield estimates of the treatment effect with a positive bias (smaller magnitude) when there is a negative period effect.  The models using baseline data yield unbiased estimates of the treatment effect, but in both cases the standard errors of the treatment effect increase if there is a period effect.  Thus, in all cases, the descriptive statistics of the observed Wald statistic distribution are smaller than the corresponding descriptive statistics when there is no period effect, resulting in a loss of power.  


When treatment increases the standard deviation of the observed values, the estimates of the treatment effect have positive bias if there is a period effect.  The standard error of these estimates also increase somewhat, again resulting in a loss of power. 
Reduction of power as a result using a dichotomous meaningful decrease as an outcome measure
We consider the two-group parallel design treatment study. If both the baseline (time t0) and follow-up (time t1) measurements have Gaussian distributions, we can compute the probability of a meaningful decrease (as used in our analysis of the Carraguard data and the simulations) in the measurement at t1. Let the mean unaffected by treatment be μ0, the mean treatment effect be μT, the correlation between two measurements be ρ, the lower quantification limit be Q, and the decrease required for a meaningful decrease when both measurements are quantifiable be δ. A decrease from a quantifiable measurement to a non-quantifiable measurement is also regarded as meaningful. Without loss of generality, let the standard deviation of the distribution at time t0 be 1. For simplification, let the standard deviation at time t1 also be 1. Let the observed values at t0 and t1 be u0 and u1, respectively. Then the distribution of u1 given u0 is Gaussian with mean μ1 = μ0 – μT + ρ(u0 – μ0) = μ0(1-ρ) + ρu0 – μT and variance σ12 = 1 – ρ2.21 If there is no quantification limit, φ(u; μ, σ) is the Gaussian probability density function with mean μ and standard deviation σ, and Ф(.) is the cumulative Gaussian function, then the probability that both measurements are quantifiable and the decrease is at least δ is


 EMBED Equation.3  


With lower quantification limit Q, the probability of a meaningful decrease is
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We used the QUAD subroutine in SAS version 9.1 to compute this probability for selected values of μ0 and μT when ρ = 0.6, Q = 1.9 (values suggested by the Carraguard data), and δ = 0.5.
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Table 1. Number (percent) of changes in HIV-1 CVL RNA from day 0 to day 7 classified as a meaningful decrease, by treatment and by cycle, phase I Carraguard® trial, Chiang Rai, Thailand.
. 
	ND separate

 from NQ
	Treatment
	Cycle
	Total

(N=163)

	
	Carraguard®

(N = 54)
	Placebo gel

(N=55)
	No product

(N=54)
	1

(N=58)
	2

(N=53)
	3

(N=52)
	

	

	No
	19 (35)
	22 (40)
	15 (28)
	20 (34)
	19 (36)
	17 (33)
	56 (34)

	Yes
	24 (44)
	27 (49)
	22 (41)
	24 (41)
	27 (51)
	22 (42)
	73 (45)


ND: none detected; NQ: detected but not quantifiable.

Table 2. p –values for test statistics for the tests of the normality of quantifiable HIV CVL values at the start of each cycle, phase I Carraguard® trial, Chiang Rai, Thailand.
.

	Test statistic
	Cycle

	
	1
	2
	3

	Shapiro - Wilk
	   0.06
	0.01
	   0.15

	Kolmogorov - Smirnov
	> 0.15
	0.07
	> 0.15

	Cramer – von Mises
	   0.18
	0.08
	> 0.25

	Anderson - Darling
	   0.10
	0.04
	> 0.25


Table 3.  Numbers of quantifiable (Q) and NQ values predicted by the mixed models with equal variances and no period effects fit to the Carraguard data compared to the numbers of observed Q and NQ values, by treatment used in the cycle.

	Observed

value
	Predicted value

	
	No product
	Placebo gel
	Carraguard

	
	Q
	NQ
	Total
	Q
	NQ
	Total
	Q
	NQ
	Total

	Model fit to data from day 7 only

	Q
	23
	  7
	30
	21
	  2
	23
	22
	  1
	23

	NQ
	  0  
	24
	24
	  3
	29
	32
	  2
	29
	31

	Total
	23
	31
	54
	24
	31
	55
	24
	30
	54

	Model fit to data from both days 0 and 7

	Q
	55
	  9
	  64
	51
	  6
	  57
	42
	12
	  54

	NQ
	  3  
	41
	  44
	  6
	47
	  53
	  5
	49
	  54

	Total
	58
	50
	108
	57
	53
	110
	47
	61
	108


Table 4.  Analyses of the variation of HIV-1 CVL RNA among treatments from mixed models with period effects: test statistics and p-values, and treatment effect coefficients (standard error estimates).  Phase I Carraguard® trial, Chiang Rai, Thailand.  
	Model
	LRTest
	df
	Gel
	Carraguard

	Model based on data from day 7 only

	Equal variances
	14.9 (0.001)
	2
	-0.414 (0.142)
	-0.549 (0.144)

	Unequal variances
	15.1 (0.002)
	3
	-0.395 (0.151)
	-0.528 (0.154)

	Model based on data from both days 0 and 7

	Equal variances
	7.9 (0.019)
	2
	-0.522 (0.185)
	-0.303 (0.188)

	Unequal variances
	8.1 (0.044)
	3
	-0.514 (0.188)
	-0.295 (0.190)


Table 5.  Probability of a non-quantifiable assay result, by baseline mean and the standard deviation σTrt of the follow-up result after treatment (treatment effect, 0.5).

	Assay time
	Baseline mean

	
	2.0
	2.5
	3.0
	4.0

	Baseline
	0.46
	0.28
	0.14
	0.02

	Follow-up: σTrt=1.0
	0.66
	0.46
	0.28
	0.06

	Follow-up: σtrt=1.4
	0.61
	0.47
	0.33
	0.13


Table 6.  Size (percent) of tests for the parallel design at the 5% significance level, based on 4000 simulations, with a baseline mean of 2.5 and 64 per arm, for  alternative values of the treatment standard deviation σTrt.
	
	σTrt=1
	σTrt=1.4

	tc "Print " \f C \l 1

tc "Data Set WORK.NOTRTEFFECT " \f C \l 2Model or test
	Size
	Size

	Nonparametric analyses

	Wilcoxon, NQ and ND combined
	5.1
	6.3

	Wilcoxon, NQ and ND separate
	5.3
	5.5

	Gehan, NQ and ND combined
	5.1
	6.4

	Mixed models

	Equal variances
	4.9
	1.7

	Unequal variances
	4.9
	3.5

	Mixture models using follow-up data only

	Likelihood L2, equal variances
	6.0
	37.1

	Likelihood L2, unequal variances
	7.3
	56.2

	Likelihood L1, equal variances
	16.0
	61.9

	Likelihood L1, unequal variances
	22.8
	77.3

	Mixture models using both baseline and follow-up data

	Likelihood L2, equal variances
	1.2
	15.1

	Likelihood L2, unequal variances
	2.4
	57.1

	Likelihood L1, equal variances
	7.3
	42.9

	Likelihood L1, unequal variances
	15.0
	79.6

	Logistic regression models using both baseline and follow-up data

	NQ and ND combined
	5.0
	5.7

	NQ and ND separate
	4.7
	5.2


Table 7.  Median estimated Gaussian treatment effect coefficients (median standard error) for a two-arm parallel design model based on 4000 simulations with a treatment effect of 0.5.
64 per arm, variance of treated values = 1

	
	Baseline mean

	Model
	2.0
	2.5
	3.0
	4.0

	Mixed models using both baseline and follow-up values

	Equal variances
	-0.492 ( 0.190)
	-0.499 (0.171)
	-0.499 (0.162)
	-0.502 (0.157)

	Unequal variances
	-0.493 (0.213)
	-0.500 (0.178)
	-0.502 (0.164)
	-0.502 (0.157)

	Mixture models using the likelihood L2 with follow-up values only

	Equal variances
	-0.166 (0.156)
	-0.226 ( 0.150)
	-0.291 (0.151)
	-0.432 (0.165)

	Unequal variances
	-0.166 (0.151)
	-0.226 (0.146)
	-0.291 ( 0.150)
	-0.432 (0.165)

	Mixture models using the likelihood L2 with both baseline and follow-up values

	Equal variances
	-0.165 (0.218)
	-0.226 (0.214)
	-0.296 ( 0.220)
	-0.432 (0.238)

	Unequal variances
	-0.165 (0.283)
	-0.226 (0.272)
	-0.296 (0.269)
	-0.432 (0.262)


90 per arm, variance of treated values = 1.4

	
	Baseline mean

	Model
	2.0
	2.5
	3.0
	4.0

	Mixed models using both baseline and follow-up values

	Equal variances
	-0.229 (0.172)
	-0.321 (0.159)
	-0.391 (0.152)
	-0.470  (0.149)

	Unequal variances
	-0.399 (0.203)
	-0.442 (0.176)
	-0.473 (0.162)
	-0.497 (0.155)

	Mixture models using the likelihood L2 with both follow-up values only

	Equal variances
	0.149 ( 0.150)
	0.094 (0.148)
	0.011 (0.149)
	-0.213 (0.162)

	Unequal variances
	0.149 (0.155)
	0.094 (0.151)
	0.011 (0.152)
	-0.213 (0.163)

	Mixture models using the likelihood L2 with both baseline and follow-up values

	Equal variances
	0.149 (0.205)
	0.094 (0.202)
	0.010 (0.204)
	-0.214 (0.218)

	Unequal variances
	0.149 (0.177)
	0.094 (0.176)
	0.010 ( 0.180)
	-0.214 (0.186)


Table 8.  Coverage of 95% confidence intervals for Gaussian parameter estimates of the treatment effect for the parallel arm design based on 4000 simulations with a treatment effect of 0.5, by the baseline mean and variance of the treated values σTrt.

	
	64 per arm, σTrt=1
	90 per arm, σTrt=1

	Baseline mean
	2.0
	2.5
	3.0
	4.0
	2.0
	2.5
	3.0
	4.0

	Mixed models using both baseline and follow-up data

	Equal variances
	94.4
	94.8
	95.6
	94.5
	65.8
	80.3
	89.8
	94.8

	Unequal variances
	95.0
	95.0
	95.6
	94.5
	91.7
	94.0
	95.2
	95.5

	Mixture models using the likelihood L2 with follow-up data only

	Equal variances
	43.2
	54.6
	71.7
	91.8
	1.0
	2.4
	7.4
	57.2

	Unequal variances
	39.7
	52.9
	71.2
	91.7
	0.9
	2.4
	7.6
	58.0

	Mixture models using the likelihood L2 with both baseline and follow-up data

	Equal variances
	69.8
	80.3
	91.7
	99.2
	7.0
	11.0
	23.8
	82.3

	Unequal variances
	81.6
	89.1
	95.2
	99.3
	6.0
	7.8
	16.4
	69.2


Table 9.  Size (percent) of tests at the 5% significance level for the crossover design based on 4000 simulations, with a baseline mean of 2.5 and 16 per arm, for alternative values of the treatment standard deviation σTrt.  

	tc "Print " \f C \l 1

tc "Data Set WORK.NOTRTEFFECT " \f C \l 2Model or test
	σTrt=1
	σTrt=1.4

	Nonparametric analyses

	Wilcoxon, NQ and ND combined
	5.8
	6.7

	Wilcoxon, NQ and ND separate
	5.6
	5.6

	Schouten/Kester
	2.5
	1.7

	Mixed models using follow-up data only

	Equal variances
	5.5
	9.1

	Unequal variances
	4.7
	4.2

	Mixed models using both baseline and follow-up data

	Equal variances
	4.8
	6.3

	Unequal variances
	4.8
	4.1

	Mixture models using follow-up data only

	Likelihood L2, equal variances
	5.5
	14.2

	Likelihood L2, unequal variances
	9.3
	19.5

	Likelihood L1, equal variances
	13.6
	25.4

	Likelihood L1, unequal variances
	22.7
	39.9

	Mixture models using both baseline and follow-up data

	Likelihood L2, equal variances
	42.5
	77.8

	Likelihood L2, unequal variances
	9.8
	64.9

	Logistic regression models using both baseline and follow-up data

	NQ and ND combined
	5.3
	4.8

	NQ and ND separate
	5.5
	5.4


Table 10.  Median estimated Gaussian treatment effect coefficients (median standard error) for a crossover design model based on 4000 simulations with a treatment effect of 0.5.
16 per arm, variance of treated values = 1

	
	Baseline mean

	Model
	2.0
	2.5
	3.0
	4.0

	Mixed models using follow-up data only

	Equal variances
	-0.493 (0.195)
	-0.497 (0.174)
	-0.501 (0.161)
	-0.500 (0.155)

	Unequal variances
	-0.489 (0.259)
	-0.497 (0.195)
	-0.499 (0.167)
	-0.502 (0.156)

	Mixed models using both baseline and follow-up values

	Equal variances
	-0.498 (0.265)
	-0.503 ( 0.240)
	-0.506 (0.227)
	-0.502 ( 0.220)

	Unequal variances
	-0.501 (0.287)
	-0.507 (0.247)
	-0.506 (0.230)
	-0.503 ( 0.220)

	Mixture models using the likelihood L2 with follow-up values only

	Equal variances
	-0.171 (0.269)
	-0.227 (0.275)
	-0.295 (0.286)
	-0.444 (0.321)


30 per arm, variance of treated values = 1.4

	
	Baseline mean

	Model
	2.0
	2.5
	3.0
	4.0

	Mixed models using follow-up data only

	Equal variances
	-0.253 (0.167)
	-0.342 (0.153)
	-0.404 (0.147)
	-0.476 (0.143)

	Unequal variances
	-0.476 (0.224)
	-0.478 ( 0.180)
	-0.489 (0.160)
	-0.500 (0.150)

	Mixed models using both baseline and follow-up values

	Equal variances
	-0.235 (0.209)
	-0.317 (0.193)
	-0.386 (0.185)
	-0.466 (0.182)

	Unequal variances
	-0.372 (0.236)
	-0.420 (0.209)
	-0.454 (0.195)
	-0.492 (0.187)


Table 11.  Coverage of 95% confidence intervals for Gaussian parameter estimates of a treatment effect of 0.5 for the crossover design based on 4000 simulations, by the baseline mean and variance of treated values σTrt.

	
	16/arm, σTrt=1
	30/arm, σTrt=1.4

	Baseline mean
	2.0
	2.5
	3.0
	4.0
	2.0
	2.5
	3.0
	4.0

	Mixed models using baseline data only

	Equal variances
	94.3
	94.3
	95.2
	94.6
	68.9
	82.3
	89.6
	94.8

	Unequal variances
	97.0
	95.4
	95.6
	94.6
	95.6
	95.6
	95.1
	95.1

	Mixed models using both baseline and follow-up data

	Equal variances
	96.0
	95.8
	95.3
	95.2
	76.2
	84.5
	90.4
	95.5

	Unequal variances
	96.7
	96.0
	95.5
	95.3
	91.0
	93.9
	94.5
	96.0

	Mixture model using follow-up data only

	Equal variances
	72.2
	81.2
	86.6
	NA
	NS
	NS
	NS
	NS


Table 12.  Summary statistics for the mixed model analysis of the two-period, two-treatment crossover design allowing for period effects, by mean period effect (standard error of this effect), and variance of the treated values σTrt.

35 per arm, σtrt=1.0

	
	Mean period effect (standard deviation)

	Model
	0.0 (0.0)
	-0.3 (0.3)
	-0.3 (0.1)

	Estimated treatment effect: median (interquartile range)

	Follow-up values only, equal variances
	-0.497 (-0.577,-0.417)
	-0.348 (-0.437,-0.259)
	-0.347 (-0.435,-0.261)

	Follow-up values only, unequal variances
	-0.497 (-0.585,-0.407)
	-0.346 (-0.447,-0.245)
	-0.347 (-0.446,-0.248)

	Baseline and follow-up values, equal variances
	-0.497 (-0.606,-0.385)
	-0.496 (-0.614,-0.371)
	-0.490 (-0.608,-0.374)

	Baseline and follow-up values, unequal variances
	-0.497 (-0.611,-0.381)
	-0.495 (-0.617,-0.368)
	-0.492 (-0.612, -0.37)

	Estimated standard error of treatment effect: median (interquartile range)

	Follow-up values only, equal variances
	0.118 ( 0.11,0.127)
	0.129 (0.119,0.139)
	0.123 (0.114,0.134)

	Follow-up values only, unequal variances
	0.132 (0.121,0.144)
	0.152 (0.139,0.168)
	0.146 (0.133,0.162)

	Baseline and follow-up values, equal variances
	0.163 (0.156,0.171)
	0.177 (0.170,0.186)
	0.170 (0.162,0.179)

	Baseline and follow-up values, unequal variances
	0.167 (0.160,0.176)
	0.184 (0.175,0.194)
	0.177 (0.167,0.187)

	Wald chi-square test statistic for a treatment effect: median (interquartile range)

	Follow-up values only, equal variances
	17.48 (12.23,24.11)
	7.29 ( 4.14,11.53)
	7.74 ( 4.51,12.27)

	Follow-up values only, unequal variances
	14.29 (  9.59,19.28)
	5.22 ( 2.66, 8.62)
	5.63 ( 2.93,  9.04)

	Baseline and follow-up values, equal variances
	 9.26 (  5.49,13.89)
	7.78 ( 4.40,11.92)
	8.20 ( 4.77,12.63)

	Baseline and follow-up values, unequal variances
	 8.83 (  5.21,13.17)
	7.25 ( 3.94,11.04)
	7.66 ( 4.41,11.91)


Table 12 (continued).  Summary statistics for the mixed model analysis of the two-period, two-treatment crossover design allowing for period effects, by mean period effect (standard error of this effect), and variance of the treated values σTrt.

50 per arm, σtrt=1.4

	
	Mean period effect (standard deviation)

	Model
	0.0 (0.0)
	-0.3 (0.3)
	-0.3 (0.1)

	Estimated treatment effect: median (interquartile range)

	Follow-up values only, equal variances
	-0.341 (-0.422,-0.261)
	-0.152 (-0.244,-0.067)
	-0.154 (-0.237, -0.070)

	Follow-up values only, unequal variances
	-0.479 (-0.575,-0.384)
	-0.327 (-0.436,-0.224)
	-0.330 (-0.432,-0.233)

	Baseline and follow-up values, equal variances
	-0.321 (-0.421,-0.218)
	-0.288 (-0.399,-0.175)
	-0.288 (-0.392,-0.183)

	Baseline and follow-up values, unequal variances
	-0.423 (-0.535,-0.312)
	-0.397 (-0.518,-0.283)
	-0.397 (-0.509,-0.288)

	Estimated standard error of treatment effect: median (interquartile range)

	Follow-up values only, equal variances
	0.119 (0.112,0.126)
	0.128 (0.119,0.137)
	0.124 (0.116,0.133)

	Follow-up values only, unequal variances
	0.139 (0.129,0.151)
	0.155 (0.143,0.169)
	0.151 (0.139,0.165)

	Baseline and follow-up values, equal variances
	0.150 (0.144,0.155)
	0.161 (0.155,0.167)
	0.155 (0.149,0.161)

	Baseline and follow-up values, unequal variances
	0.162 (0.154, 0.170)
	0.175 (0.166,0.185)
	0.169 (0.160,0.178)

	Wald chi-square test statistic for a treatment effect: median (interquartile range)

	Follow-up values only, equal variances
	 8.23 ( 4.86, 12.6)
	1.46 (  0.41, 3.70)
	1.59 ( 0.44, 3.62)

	Follow-up values only, unequal variances
	11.89 ( 8.13,15.78)
	4.39 (  2.20, 7.22)
	4.73 ( 2.52, 7.59)

	Baseline and follow-up values, equal variances
	 4.62 ( 2.12, 7.94)
	3.23 (  1.20, 6.12)
	3.48 ( 1.39, 6.44)

	Baseline and follow-up values, unequal variances
	 6.81 ( 3.81,10.49)
	5.10 ( 2.66, 8.43)
	5.53 ( 2.95, 8.87)


 Figure 1.  Normal probability plots of the log10 quantifiable CVL assay values at the start of each cycle.
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