Cross-formational flow of water into coalbed methane reservoirs: controls on relative permeability curve shape and production profile
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Cross-formational flow of water into coalbed methane reservoirs: controls on relative permeability curve shape and production profile

Filetype[PDF-3.01 MB]



Details:

  • Alternative Title:
    Environ Earth Sci
  • Publisher's site:
  • Description:
    Coalbed methane (CBM) wells tend to produce large volumes of water, especially when there is hydraulic connectivity between coalbed and nearby formations. Cross-formational flow between producing coal and adjacent formations can have significant production and environmental implications, affecting economic viability of production from these shallow reservoirs. Such flows can also affect how much gas can be removed from a coalbed prior to mining and thus can have implications for methane control in mining as well. The aim of this paper is to investigate the impact of water flow from an external source into coalbed on production performance and also on reservoir variables including cleat porosity and relative permeability curves derived from production data analysis. A reservoir model is constructed to investigate the production performance of a CBM well when cross-formational flow is present between the coalbed and the overlying formation. Results show that cleat porosity calculated by analysis of production data can be more than one order of magnitude higher than actual cleat porosity. Due to hydraulic connectivity, water saturation within coalbed does not considerably change for a period of time, and hence, the peak of gas production is delayed. Upon depletion of the overlying formation, water saturation in coalbed quickly decreases. Rapid decline of water saturation in the coalbed corresponds to a sharp increase in gas production. As an important consequence, when cross-flow is present, gas and water relative permeability curves, derived from simulated production data, have distinctive features compared to the initial relative permeability curves. In the case of cross-flow, signatures of relative permeability curves are concave downward and low gas permeability for a range of water saturation, followed by rapid increase afterward for water and gas, respectively. The results and analyses presented in this work can help to assess the impact of cross-formational flow on reservoir variables derived from production data analysis and can also contribute to identifying hydraulic connectivity between coalbed and adjacent formations.
  • Pubmed ID:
    28626492
  • Pubmed Central ID:
    PMC5472215
  • Document Type:
  • Collection(s):
  • Main Document Checksum:
  • File Type:

You May Also Like

Checkout today's featured content at stacks.cdc.gov