i
Superseded
This Document Has Been Replaced By:
i
Retired
This Document Has Been Retired
i
Up-to-date Information
This is the latest update:
Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite
-
Published Date:
Apr 04 2016
-
Publisher's site:
-
Source:Nat Commun. 2016; 7.
-
Details:
-
Alternative Title:Nat Commun
-
Personal Author:
-
Description:Plasmodium knowlesi is a zoonotic parasite transmitted from macaques causing malaria in humans in Southeast Asia. Plasmodium parasites bind to red blood cell (RBC) surface receptors, many of which are sialylated. While macaques synthesize the sialic acid variant N-glycolylneuraminic acid (Neu5Gc), humans cannot because of a mutation in the enzyme CMAH that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Here we reconstitute CMAH in human RBCs for the reintroduction of Neu5Gc, which results in enhancement of P. knowlesi invasion. We show that two P. knowlesi invasion ligands, PkDBPβ and PkDBPγ, bind specifically to Neu5Gc-containing receptors. A human-adapted P. knowlesi line invades human RBCs independently of Neu5Gc, with duplication of the sialic acid-independent invasion ligand, PkDBPα and loss of PkDBPγ. Our results suggest that absence of Neu5Gc on human RBCs limits P. knowlesi invasion, but that parasites may evolve to invade human RBCs through the use of sialic acid-independent pathways.
-
Subject:
-
Pubmed ID:27041489
-
Pubmed Central ID:PMC4822025
-
Document Type:
-
Funding:
-
Collection(s):
-
Main Document Checksum:
- File Type:
-
Supporting Files:
image/jpeg application/pdf application/octet-stream image/gif image/jpeg image/gif image/jpeg image/gif image/jpeg image/gif image/jpeg
No Related Documents.