Inhalation of Ortho-Phthalaldehyde Vapor Causes Respiratory Sensitization in Mice
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Inhalation of Ortho-Phthalaldehyde Vapor Causes Respiratory Sensitization in Mice

Filetype[PDF-986.66 KB]


  • Alternative Title:
    J Allergy (Cairo)
  • Description:
    Ortho-Phthalaldehyde (OPA) has been approved for high-level sterilization of heat-sensitive medical instruments and is increasingly being used as a replacement in the healthcare industry for glutaraldehyde, a known sensitizer. Numerous case reports have been published indicating workers and patients experiencing respiratory problems, anaphylaxis, skin reactivity, and systemic antibody production. Our laboratory previously demonstrated that OPA is a dermal sensitizer in mice. The goal of the present study was to determine if OPA is a respiratory sensitizer following inhalation exposure. Mice were exposed to OPA vapor and airway and lymph nodes were examined for cytokine gene expression and alterations in lymphocyte populations. Inhalation of OPA for 3 days resulted in a concentration-dependent increase in lymphocyte proliferation, mainly B lymphocytes, in the draining lymph nodes. A secondary challenge of mice with OPA resulted in a dramatic increase in the population of B lymphocytes expressing IgE. Expression of Th2 (IL-4, IL-5, and IL-13) and anti/proinflammatory (IL-10, TNFα, and IL-1β) cytokine genes was upregulated in the lymph nodes and the nasal mucosa. Mice exposed to the higher concentrations of OPA-produced OPA-specific IgG(1) antibodies indicating systemic sensitization. These findings provide evidence that OPA has the potential to cause respiratory sensitization in mice.
  • Document Type:
  • Collection(s):
  • Main Document Checksum:
  • File Type:

You May Also Like

Checkout today's featured content at