Assessing human exposure to phthalates using monoesters and their oxidized metabolites as biomarkers.
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Assessing human exposure to phthalates using monoesters and their oxidized metabolites as biomarkers.

Filetype[PDF-146.51 KB]


  • Alternative Title:
    Environ Health Perspect
  • Description:
    Phthalates are a group of industrial chemicals with many commercial uses, such as solvents, additives, and plasticizers. For example, di-(2-ethylhexyl) phthalate (DEHP) is added in varying amounts to certain plastics, such as polyvinyl chloride, to increase their flexibility. In humans, phthalates are metabolized to their respective monoesters, conjugated, and eliminated. However, despite the high production and use of DEHP, we have recently found that the urinary levels of the DEHP metabolite mono-(2-ethylhexyl) phthalate (MEHP) in 2,541 persons in the United States were lower than we anticipated, especially when compared with urinary metabolite levels of other commonly used phthalates. This finding raised questions about the sensitivity of this biomarker for assessing DEHP exposure. We explored the utility of two other DEHP metabolites, mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) and mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), as additional DEHP biomarkers. These metabolites are formed by oxidative metabolism of MEHP. In urine from 62 people, both the range and the mean urinary levels of MEOHP and MEHHP were on average 4-fold higher than those of MEHP; the mean of the individual ratios of MEHHP/MEOHP, MEHHP/MEHP, and MEOHP/MEHP were 1.4, 8.2, and 5.9, respectively. These data suggest that MEOHP and MEHHP are more sensitive biomarkers of exposure to DEHP than is MEHP. These findings also suggest a predominant human metabolic route for DEHP hydrolysis to MEHP followed by oxidation of MEHP; they also imply that a similar mechanism may be relevant for other high-molecular-weight phthalates, such as di-n-octyl, di-isononyl, and di-isodecyl phthalates.
  • Document Type:
  • Collection(s):
  • Main Document Checksum:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at