Influence of secondary aspiration on human aspiration efficiency
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners. As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
i

Influence of secondary aspiration on human aspiration efficiency

Filetype[PDF-675.24 KB]



Details:

  • Alternative Title:
    J Aerosol Sci
  • Personal Author:
  • Description:
    Computational fluid dynamics (CFD) was used to evaluate the contribution of secondary aspiration to human aspiration efficiency estimates using a humanoid model with realistic facial features. This study applied coefficient of restitution (CoR) values for working-aged human facial skin to the facial regions on the humanoid CFD model. Aspiration efficiencies for particles ranging from 7 to 116 μm were estimated for bounce (allowing for secondary aspiration) and no-bounce (CoR=0) simulations. Fluid simulations used the standard k-epsilon turbulence model over a range of test conditions: three freestream velocities, two breathing modes (mouth and nose breathing, using constant inhalation), three breathing velocities, and five orientations relative to the oncoming wind. Laminar particle trajectory simulations were used to examine inhaled particle transport and estimate aspiration efficiencies. Aspiration efficiency for the realistic CoR simulations, for both mouth- and nose-breathing, decreased with increasing particle size, with aspiration around 50% for 116 μm particles. For the CoR=0 simulations, aspiration decreased more rapidly with increasing particle size and approached zero for 116 μm compared to realistic CoR models (differences ranged from 0% to 80% over the particle sizes and velocity conditions). Differences in aspiration efficiency were larger with increasing particle size (>52 μm) and increased with decreasing freestream velocity and decreasing breathing rate. Secondary aspiration was more important when the humanoid faced the wind, but these contributions to overall aspiration estimates decreased as the humanoid rotated through 90°. There were minimal differences in aspiration between uniform CoR values of 0.5, 0.8, 1.0 and realistic regionally-applied CoR values, indicating differences between mannequin surfaces and between mannequin and human skin will have negligible effect on aspiration for facing-the-wind orientation.
  • Subjects:
  • Source:
  • Pubmed ID:
    26778849
  • Pubmed Central ID:
    PMC4711272
  • Document Type:
  • Funding:
  • Volume:
    75
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at stacks.cdc.gov