Climate change influences on the annual onset of Lyme disease in the United States
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners. As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
i

Climate change influences on the annual onset of Lyme disease in the United States

Filetype[PDF-778.27 KB]


English

Details:

  • Alternative Title:
    Ticks Tick Borne Dis
  • Personal Author:
  • Description:
    Lyme disease is the most commonly reported vector-borne illness in the United States. Lyme disease occurrence is highly seasonal and the annual springtime onset of cases is modulated by meteorological conditions in preceding months. A meteorological-based empirical model for Lyme disease onset week in the United States is driven with downscaled simulations from five global climate models and four greenhouse gas emissions scenarios to project the impacts of 21st century climate change on the annual onset week of Lyme disease. Projections are made individually and collectively for the 12 eastern States where >90% of cases occur. The national average annual onset week of Lyme disease is projected to become 0.4-0.5 weeks earlier for 2025-2040 (p<0.05), and 0.7-1.9 weeks earlier for 2065-2080 (p<0.01), with the largest shifts for scenarios with the highest greenhouse gas emissions. The more southerly mid-Atlantic States exhibit larger shifts (1.0-3.5 weeks) compared to the Northeastern and upper Midwestern States (0.2-2.3 weeks) by 2065-2080. Winter and spring temperature increases primarily cause the earlier onset. Greater spring precipitation and changes in humidity partially counteract the temperature effects. The model does not account for the possibility that abrupt shifts in the life cycle of Ixodes scapularis, the primary vector of the Lyme disease spirochete Borrelia burgdorferi in the eastern United States, may alter the disease transmission cycle in unforeseen ways. The results suggest 21st century climate change will make environmental conditions suitable for earlier annual onset of Lyme disease cases in the United States with possible implications for the timing of public health interventions.
  • Subjects:
  • Source:
  • Pubmed ID:
    26025268
  • Pubmed Central ID:
    PMC4631020
  • Document Type:
  • Funding:
  • Place as Subject:
  • Volume:
    6
  • Issue:
    5
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at stacks.cdc.gov