Welcome to CDC Stacks | On-line solid phase extraction-high performance liquid chromatography–isotope dilution–tandem mass spectrometry approach to quantify N,N-diethyl-m-toluamide and oxidative metabolites in urine - 36376 | CDC Public Access
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
Help
Clear All Simple Search
Advanced Search
On-line solid phase extraction-high performance liquid chromatography–isotope dilution–tandem mass spectrometry approach to quantify N,N-diethyl-m-toluamide and oxidative metabolites in urine
Filetype[PDF - 1.07 MB]


Details:
  • Pubmed ID:
    23830449
  • Pubmed Central ID:
    PMC4629821
  • Funding:
    CC999999/Intramural CDC HHS/United States
  • Document Type:
  • Collection(s):
  • Description:
    Human exposure to N,N-diethyl-m-toluamide (DEET) occurs because of the widespread use of DEET as an active ingredient in insect repellents. However, information on the extent of such exposure is rather limited. Therefore, we developed a fast on-line solid phase extraction-high performance liquid chromatography-isotope dilution tandem mass spectrometry (HPLC-MS/MS) method to measure in urine the concentrations of DEET and two of its oxidative metabolites: N,N-diethyl-3-(hydroxymethyl)benzamide and 3-(diethylcarbamoyl)benzoic acid (DCBA). To the best of our knowledge, this is the first HPLC-MS/MS method for the simultaneous quantification of DEET and its select metabolites in human urine. After enzymatic hydrolysis of the conjugated species in 0.1 mL of urine, the target analytes were retained and pre-concentrated on a monolithic column, separated from each other and from other urinary biomolecules on a reversed-phase analytical column, and detected by atmospheric pressure chemical ionization in positive ion mode. The limits of detection ranged from 0.1 ng mL(-1) to 1.0 ng mL(-1), depending on the analyte. Accuracy ranged between 90.4 and 104.9%, and precision ranged between 5.5 and 13.1% RSD, depending on the analyte and the concentration. We tested the usefulness of this method by analyzing 75 urine samples collected anonymously in the Southeastern United States in June 2012 from adults with no known exposure to DEET. Thirty eight samples (51%) tested positive for at least one of the analytes. We detected DCBA most frequently and at the highest concentrations. Our results suggest that this method can be used for the analysis of a large number of samples for epidemiological studies to assess human exposure to DEET.