Welcome to CDC Stacks | Assessing the impact of pneumococcal conjugate vaccines on invasive pneumococcal disease using polymerase chain reaction-based surveillance: an experience from South Africa - 35499 | CDC Public Access
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
Help
Clear All Simple Search
Advanced Search
Assessing the impact of pneumococcal conjugate vaccines on invasive pneumococcal disease using polymerase chain reaction-based surveillance: an experience from South Africa
Filetype[PDF - 971.35 KB]


Details:
  • Pubmed ID:
    26496761
  • Pubmed Central ID:
    PMC4620746
  • Document Type:
  • Collection(s):
  • Description:
    Background

    The use of molecular diagnostic techniques for the evaluation of the impact of pneumococcal conjugate vaccines (PCVs) has not been documented. We aimed to evaluate the impact of PCVs on invasive pneumococcal disease (IPD) using polymerase chain reaction (PCR)-based techniques and compare with results obtained from culture-based methods.

    Methods

    We implemented two independent surveillance programs for IPD among individuals hospitalized at one large surveillance site in Soweto, South Africa during 2009–2012: (i) PCR-based (targeting the lytA gene) syndromic pneumonia surveillance; and (ii) culture-based laboratory surveillance. Positive samples were serotyped. The molecular serotyping assay included targets for 42 serotypes including all serotypes/serogroups included in the 7-valent (PCV-7) and 13-valent (PCV-13) PCV. The Quellung reaction was used for serotyping of culture-positive cases. We calculated the change in rates of IPD (lytA- or culture-positive) among HIV-uninfected children aged <2 years from the year of PCV-7 introduction (2009) to the post-vaccine years (2011 or 2012).

    Results

    During the study period there were 607 lytA-positive and 1,197 culture-positive cases that were serotyped. Samples with lytA cycle threshold (Ct)-values ≥35 (30.2 %; 123/407) were significantly less likely to have a serotype/serogroup detected for serotypes included in the molecular serotyping assay than those with Ct-values <35 (78.0 %; 156/200) (p < 0.001). From 2009 to 2012 rates of PCV-7 serotypes/serogroups decreased −63.8 % (95 % CI: −79.3 % to −39.1 %) among lytA-positive cases and −91.7 % (95 % CI: −98.8 % to −73.6 %) among culture-positive cases. Rates of lytA-positive non-vaccine serotypes/serogroups also significantly decreased (−71.7 %; 95 % CI: −81.1 % to −58.5 %) over the same period. Such decline was not observed among the culture-positive non-vaccine serotypes (1.2 %; 95 % CI: −96.7 % to 58.4 %).

    Conclusions

    Significant downward trends in IPD PCV-7 serotype-associated rates were observed among patients tested by PCR or culture methods; however trends of non-vaccine serotypes/serogroups differed between the two groups. Misclassifications of serotypes/serogroups, affecting the use of non-vaccine serotypes as a control group, may have occurred due to the low performance of the serotyping assay among lytA-positive cases with high Ct-values. Until PCR methods improve further, culture methods should continue to be used to monitor the effects of PCV vaccination programs on IPD incidence.

    Electronic supplementary material

    The online version of this article (doi:10.1186/s12879-015-1198-z) contains supplementary material, which is available to authorized users.