Analysis of 16S rRNA gene sequences and circulating cell-free DNA from plasma of chronic fatigue syndrome and non-fatigued subjects
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Analysis of 16S rRNA gene sequences and circulating cell-free DNA from plasma of chronic fatigue syndrome and non-fatigued subjects

Filetype[PDF-269.63 KB]


English

Details:

  • Alternative Title:
    BMC Microbiol
  • Personal Author:
  • Description:
    Background

    The association of an infectious agent with chronic fatigue syndrome (CFS) has been difficult and is further complicated by the lack of a known lesion or diseased tissue. Cell-free plasma DNA could serve as a sentinel of infection and disease occurring throughout the body. This type of systemic sample coupled with broad-range amplification of bacterial sequences was used to determine whether a bacterial pathogen was associated with CFS. Plasma DNA from 34 CFS and 55 non-fatigued subjects was assessed to determine plasma DNA concentration and the presence of bacterial 16S ribosomal DNA (rDNA) sequences.

    Results

    DNA was isolated from 81 (91%) of 89 plasma samples. The 55 non-fatigued subjects had higher plasma DNA concentrations than those with CFS (average 151 versus 91 ng) and more CFS subjects (6/34, 18%) had no detectable plasma DNA than non-fatigued subjects (2/55, 4%), but these differences were not significant. Bacterial sequences were detected in 23 (26%) of 89. Only 4 (14%) CFS subjects had 16S rDNA sequences amplified from plasma compared with 17 (32%) of the non-fatigued (P = 0.03). All but 1 of the 23 16S rDNA amplicon-positive subjects had five or more unique sequences present.

    Conclusions

    CFS subjects had slightly lower concentrations or no detectable plasma DNA than non-fatigued subjects. There was a diverse array of 16S rDNA sequences in plasma DNA from both CFS and non-fatigued subjects. There were no unique, previously uncharacterized or predominant 16S rDNA sequences in either CFS or non-fatigued subjects.

  • Subjects:
  • Source:
  • Pubmed ID:
    12498618
  • Pubmed Central ID:
    PMC140017
  • Document Type:
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at stacks.cdc.gov