i
A GCH1 Haplotype and Risk of Neural Tube Defects in the National Birth Defects Prevention Study
-
September 25 2012
-
-
Source: Mol Genet Metab. 107(3):592-595
Details:
-
Alternative Title:Mol Genet Metab
-
Personal Author:
-
Corporate Authors:
-
Description:Tetrahydrobiopterin (BH(4)) is an essential cofactor and an important cellular antioxidant. BH(4) deficiency has been associated with diseases whose etiologies stem from excessive oxidative stress. GTP cyclohydrolase I (GCH1) catalyzes the first and rate-limiting step of de novo BH(4) synthesis. A 3-SNP haplotype in GCH1 (rs8007267, rs3783641, and rs10483639) is known to modulate GCH1 gene expression levels and has been suggested as a major determinant of plasma BH(4) bioavailability. As plasma BH(4) bioavailability has been suggested as a mechanism of neural tube defect (NTD) teratogenesis, we evaluated the association between this GCH1 haplotype and the risk of NTDs. Samples were obtained from 760 NTD case-parent triads included in the National Birth Defects Prevention Study (NBDPS). The three SNPs were genotyped using TaqMan® SNP assays. An extension of the log-linear model was used to assess the association between NTDs and both offspring and maternal haplotypes. Offspring carrying two copies of haplotype C-T-C had a significantly increased NTD risk (risk ratio [RR]=3.40, 95% confidence interval [CI]: 1.02-11.50), after adjusting for the effect of the maternal haplotype. Additionally, mothers carrying two copies of haplotype C-T-C had a significantly increased risk of having an NTD-affected offspring (RR=3.46, 95% CI: 1.05-11.00), after adjusting for the effect of the offspring haplotype. These results suggest offspring and maternal variation in the GCH1 gene and altered BH(4) biosynthesis may contribute to NTD risk.
-
Subjects:
-
Source:
-
Pubmed ID:23059057
-
Pubmed Central ID:PMC3704723
-
Document Type:
-
Funding:
-
Collection(s):
-
Main Document Checksum:
-
Download URL:
-
File Type: