Characterizing concentrations of diethylene glycol and suspected metabolites in human serum, urine, and cerebrospinal fluid samples from the Panama DEG mass poisoning
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
i

Superseded

This Document Has Been Replaced By:

i

Retired

This Document Has Been Retired

i

Up-to-date Information

This is the latest update:

Characterizing concentrations of diethylene glycol and suspected metabolites in human serum, urine, and cerebrospinal fluid samples from the Panama DEG mass poisoning
Filetype[PDF-252.65 KB]


Details:
  • Alternative Title:
    Clin Toxicol (Phila)
  • Description:
    Context Diethylene glycol (DEG) mass poisoning is a persistent public health problem. Unfortunately, there are no human biological data on DEG and its suspected metabolites in poisoning. If present and associated with poisoning, the evidence for use of traditional therapies such as fomepizole and/or hemodialysis would be much stronger. Objective To characterize DEG and its metabolites in stored serum, urine, and cerebrospinal fluid (CSF) specimens obtained from human DEG poisoning victims enrolled in a 2006 case-control study. Methods In the 2006 study, biological samples from persons enrolled in a case-control study (42 cases with new-onset, unexplained AKI and 140 age-, sex-, and admission date-matched controls without AKI) were collected and shipped to the Centers for Disease Control and Prevention (CDC) in Atlanta for various analyses and were then frozen in storage. For this study, when sufficient volume of the original specimen remained, the following analytes were quantitatively measured in serum, urine, and CSF: DEG, 2-hydroxyethoxyacetic acid (HEAA), diglycolic acid, ethylene glycol, glycolic acid, and oxalic acid. Analytes were measured using low resolution GC/MS, descriptive statistics calculated and case results compared with controls when appropriate. Specimens were de-identified so previously collected demographic, exposure, and health data were not available. The Wilcoxon Rank Sum test (with exact p-values) and bivariable exact logistic regression were used in SAS v9.2 for data analysis. Results The following samples were analyzed: serum, 20 case, and 20 controls; urine, 11 case and 22 controls; and CSF, 11 samples from 10 cases and no controls. Diglycolic acid was detected in all case serum samples (median, 40.7 mcg/mL; range, 22.6 – 75.2) and no controls, and in all case urine samples (median, 28.7 mcg/mL; range, 14 – 118.4) and only five (23%) controls (median, 999; exact p <0.0001); and 3) urinary glycolic acid (OR = 0.057; 95% C I = 0.001–0.55). Two CSF sample results were excluded and two from the same case were averaged, yielding eight samples from eight cases. Diglycolic acid was detected in seven (88%) of case CSF samples (median, 2.03 mcg/mL; range,
  • Pubmed ID:
    24266434
  • Pubmed Central ID:
    PMC4547770
  • Document Type:
  • Place as Subject:
  • Collection(s):
  • Main Document Checksum:
  • File Type:
No Related Documents.

You May Also Like: