Diabetes Topics Associated With Engagement on Twitter
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Diabetes Topics Associated With Engagement on Twitter

Filetype[PDF-328.44 KB]



Details:

  • Alternative Title:
    Prev Chronic Dis
  • Description:
    Introduction

    Social media are widely used by the general public and by public health and health care professionals. Emerging evidence suggests engagement with public health information on social media may influence health behavior. However, the volume of data accumulating daily on Twitter and other social media is a challenge for researchers with limited resources to further examine how social media influence health. To address this challenge, we used crowdsourcing to facilitate the examination of topics associated with engagement with diabetes information on Twitter.

    Methods

    We took a random sample of 100 tweets that included the hashtag “#diabetes” from each day during a constructed week in May and June 2014. Crowdsourcing through Amazon’s Mechanical Turk platform was used to classify tweets into 9 topic categories and their senders into 3 Twitter user categories. Descriptive statistics and Tweedie regression were used to identify tweet and Twitter user characteristics associated with 2 measures of engagement, “favoriting” and “retweeting.”

    Results

    Classification was reliable for tweet topics and Twitter user type. The most common tweet topics were medical and nonmedical resources for diabetes. Tweets that included information about diabetes-related health problems were positively and significantly associated with engagement. Tweets about diabetes prevalence, nonmedical resources for diabetes, and jokes or sarcasm about diabetes were significantly negatively associated with engagement.

    Conclusion

    Crowdsourcing is a reliable, quick, and economical option for classifying tweets. Public health practitioners aiming to engage constituents around diabetes may want to focus on topics positively associated with engagement.

  • Document Type:
  • Main Document Checksum:
  • File Type:

You May Also Like

Checkout today's featured content at stacks.cdc.gov