Estimates of Occupational Inhalation Exposures to Six Oil-Related Compounds on the Four Rig Vessels Responding to the Deepwater Horizon Oil Spill
-
2022/04/01
-
Details
-
Personal Author:Banerjee S ; Blair, Austin ; Engel LS ; Groth CP ; Huynh TB ; Kwok RK ; Quick H ; Ramachandran G ; Sandler DP ; Stenzel M ; Stewart PA
-
Description:Background: The 2010 Deepwater Horizon (DWH) oil spill involved thousands of workers and volunteers to mitigate the oil release and clean-up after the spill. Health concerns for these participants led to the initiation of a prospective epidemiological study (GuLF STUDY) to investigate potential adverse health outcomes associated with the oil spill response and clean-up (OSRC). Characterizing the chemical exposures of the OSRC workers was an essential component of the study. Workers on the four oil rig vessels mitigating the spill and located within a 1852 m (1 nautical mile) radius of the damaged wellhead [the Discoverer Enterprise (Enterprise), the Development Driller II (DDII), the Development Driller III (DDIII), and the Helix Q4000] had some of the greatest potential for chemical exposures. Objectives: The aim of this paper is to characterize potential personal chemical exposures via the inhalation route for workers on those four rig vessels. Specifically, we presented our methodology and descriptive statistics of exposure estimates for total hydrocarbons (THCs), benzene, toluene, ethylbenzene, xylene, and n-hexane (BTEX-H) for various job groups to develop exposure groups for the GuLF STUDY cohort. Methods: Using descriptive information associated with the measurements taken on various jobs on these rig vessels and with job titles from study participant responses to the study questionnaire, job groups [unique job/rig/time period (TP) combinations] were developed to describe groups of workers with the same or closely related job titles. A total of 500 job groups were considered for estimation using the available 8139 personal measurements. We used a univariate Bayesian model to analyze the THC measurements and a bivariate Bayesian regression framework to jointly model the measurements of THC and each of the BTEX-H chemicals separately, both models taking into account the many measurements that were below the analytic limit of detection. Results: Highest THC exposures occurred in TP1a and TP1b, which was before the well was mechanically capped. The posterior medians of the arithmetic mean (AM) ranged from 0.11 ppm ('Inside/Other', TP1b, DDII; and 'Driller', TP3, DDII) to 14.67 ppm ('Methanol Operations', TP1b, Enterprise). There were statistical differences between the THC AMs by broad job groups, rigs, and time periods. The AMs for BTEX-H were generally about two to three orders of magnitude lower than the THC AMs, with benzene and ethylbenzene measurements being highly censored. Conclusions: Our results add new insights to the limited literature on exposures associated with oil spill responses and support the current epidemiologic investigation of potential adverse health effects of the oil spill. A correction to this article was published on April 7, 2022: https://doi.org/10.1093/annweh/wxac018. [Description provided by NIOSH]
-
Subjects:
-
Keywords:
-
ISSN:2398-7308
-
Document Type:
-
Funding:
-
Genre:
-
Place as Subject:
-
CIO:
-
Topic:
-
Location:
-
Volume:66
-
NIOSHTIC Number:nn:20061128
-
Citation:Ann Work Expo Health 2022 Apr; 66(Suppl 1):i89-i110
-
Contact Point Address:Gurumurthy Ramachandran, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
-
Email:gramach5@jhu.edu
-
CAS Registry Number:
-
Federal Fiscal Year:2022
-
Performing Organization:Drexel University, Philadelphia, Pennsylvania
-
Peer Reviewed:True
-
Start Date:20160901
-
Source Full Name:Annals of Work Exposures and Health
-
Supplement:1
-
End Date:20190831
-
Collection(s):
-
Main Document Checksum:urn:sha-512:360c2e8e56ac96614337dc73a1c2f51bd16cbc96039aa4c7943562eb6e96e42b5528c5ac3063d44b4001af51310ec3231ac77f306712016b6fcf3d6f0ba51ed9
-
Download URL:
-
File Type:
ON THIS PAGE
CDC STACKS serves as an archival repository of CDC-published products including
scientific findings,
journal articles, guidelines, recommendations, or other public health information authored or
co-authored by CDC or funded partners.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
You May Also Like