Characterization of Chemical Contaminants Generated by a Desktop Fused Deposition Modeling 3-Dimensional Printer
Public Domain
-
2017/07/01
-
Details
-
Personal Author:
-
Description:Printing devices are known to emit chemicals into the indoor atmosphere. Understanding factors that influence release of chemical contaminants from printers is necessary to develop effective exposure assessment and control strategies. In this study, a desktop fused deposition modeling (FDM) 3-D printer using acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA) filaments and two monochrome laser printers were evaluated in a 0.5 m3 chamber. During printing, chamber air was monitored for vapors using a real-time photoionization detector (results expressed as isobutylene equivalents) to measure total volatile organic compound (TVOC) concentrations, evacuated canisters to identify specific VOCs by off-line gas chromatography-mass spectrometry (GC-MS) analysis, and liquid bubblers to identify carbonyl compounds by GC-MS. Airborne particles were collected on filters for off-line analysis using scanning electron microscopy with an energy dispersive x-ray detector to identify elemental constituents. For 3-D printing, TVOC emission rates were influenced by a printer malfunction, filament type, and to a lesser extent, by filament color; however, rates were not influenced by the number of printer nozzles used or the manufacturer's provided cover. TVOC emission rates were significantly lower for the 3-D printer (49 to 3552 ug h 1) compared to the laser printers (5782 to 7735 ug h 1). A total of 14 VOCs were identified during 3-D printing that were not present during laser printing. 3-D printed objects continued to off-gas styrene, indicating potential for continued exposure after the print job is completed. Carbonyl reaction products were likely formed from emissions of the 3-D printer, including 4-oxopentanal. Ultrafine particles generated by the 3-D printer using ABS and a laser printer contained chromium. Consideration of the factors that influenced the release of chemical contaminants (including known and suspected asthmagens such as styrene and 4-oxopentanal) from a FDM 3-D printer should be made when designing exposure assessment and control strategies. [Description provided by NIOSH]
-
Subjects:
-
Keywords:
-
ISSN:1545-9624
-
Document Type:
-
Genre:
-
Place as Subject:
-
CIO:
-
Division:
-
Topic:
-
Location:
-
Volume:14
-
Issue:7
-
NIOSHTIC Number:nn:20049660
-
Citation:J Occup Environ Hyg 2017 Jul; 14(7):540-550
-
Contact Point Address:Aleksandr B. Stefaniak, National Institute for Occupational Safety and Health, Morgantown, WV, 26505
-
Email:AStefaniak@cdc.gov
-
Federal Fiscal Year:2017
-
NORA Priority Area:
-
Peer Reviewed:True
-
Source Full Name:Journal of Occupational and Environmental Hygiene
-
Collection(s):
-
Main Document Checksum:urn:sha-512:b646be039304055ee3c0daf6a63e1d90b55f4b1cf5c12a9a5b4b4820a28935c074c8cb7f649444b022f24f8bc2beb697f86664d019e1e3818fa9050faf3f12f9
-
Download URL:
-
File Type:
ON THIS PAGE
CDC STACKS serves as an archival repository of CDC-published products including
scientific findings,
journal articles, guidelines, recommendations, or other public health information authored or
co-authored by CDC or funded partners.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
You May Also Like