The Influence of Spray Properties on Intranasal Deposition
-
2007/12/01
-
Details
-
Personal Author:
-
Description:While numerous devices, formulations, and spray characteristics have been shown to influence nasal deposition efficiency, few studies have attempted to identify which of these interacting factors plays the greatest role in nasal spray deposition. The deposition patterns of solutions with a wide range of surface tensions and viscosities were measured using an MRI-derived nasal cavity replica. The resulting spray plumes had angles between 29 degrees and 80 degrees and contained droplet sizes (D(v50)) from 37-157 microm. Each formulation contained rhodamine 590 as a fluorescent marker for detection. Administration angles of 30 degrees , 40 degrees , or 50 degrees above horizontal were tested to investigate the role of user technique on nasal deposition. The amount of spray deposited within specific regions of the nasal cavity was determined by disassembling the replica and measuring the amount of rhodamine retained in each section. Most of the spray droplets were deposited onto the anterior region of the model, but sprays with small plume angles were capable of reaching the turbinate region with deposition efficiencies approaching 90%. Minimal dependence on droplet size, viscosity, or device was observed. Changes in inspiratory flow rate (0-60 L/min) had no significant effect on turbinate deposition efficiency. Both plume angle and administration angle were found to be important factors in determining deposition efficiency. For administration angles of 40 degrees or 50 degrees, maximal turbinate deposition efficiency (30-50%) occurred with plume angles of 55-65 degrees, whereas a 30 degrees administration angle gave an approximately 75% deposition efficiency for similar plume angles. Deposition efficiencies of approximately 90% could be achieved with plume angles <30 degrees using 30 degrees administration angles. Both the plume angle and administration angle are critical factors in determining deposition efficiency, while many other spray parameters, including particle size, have relatively minor influences on deposition within the nasal cavity. [Description provided by NIOSH]
-
Subjects:
-
Keywords:
-
ISSN:0894-2684
-
Document Type:
-
Funding:
-
Genre:
-
Place as Subject:
-
CIO:
-
Topic:
-
Location:
-
Pages in Document:495-508
-
Volume:20
-
Issue:4
-
NIOSHTIC Number:nn:20033339
-
Citation:J Aerosol Med 2007 Winter; 20(4):495-508
-
Contact Point Address:Maureen D. Donovan, Ph.D. University of Iowa College of Pharmacy 115 S. Grand Ave Iowa City, IA 52242
-
Email:maureen-donovan@uiowa.edu
-
Federal Fiscal Year:2008
-
Performing Organization:Lovelace Biomedical & Environmental Research
-
Peer Reviewed:True
-
Start Date:20020901
-
Source Full Name:Journal of Aerosol Medicine
-
End Date:20080831
-
Collection(s):
-
Main Document Checksum:urn:sha-512:3e5087c12f56dd0e7f91c6c9058ab76843a47ec3f3cb98b02fd7b5ed474bc7d21537daa5af7bd99ec736a2a3f96950dcb05da38d73d310852717c3c9c663e68e
-
Download URL:
-
File Type:
ON THIS PAGE
CDC STACKS serves as an archival repository of CDC-published products including
scientific findings,
journal articles, guidelines, recommendations, or other public health information authored or
co-authored by CDC or funded partners.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
You May Also Like