A Bayesian Network Model for Biomarker-Based Dose Response
Public Domain
-
2010/07/01
Details
-
Personal Author:
-
Description:A Bayesian network model was developed to integrate diverse types of data to conduct an exposure-dose-response assessment for benzene-induced acute myeloid leukemia (AML). The network approach was used to evaluate and compare individual biomarkers and quantitatively link the biomarkers along the exposure-disease continuum. The network was used to perform the biomarker-based dose-response analysis, and various other approaches to the dose-response analysis were conducted for comparison. The network-derived benchmark concentration was approximately an order of magnitude lower than that from the usual exposure concentration versus response approach, which suggests that the presence of more information in the low-dose region (where changes in biomarkers are detectable but effects on AML mortality are not) helps inform the description of the AML response at lower exposures. This work provides a quantitative approach for linking changes in biomarkers of effect both to exposure information and to changes in disease response. Such linkage can provide a scientifically valid point of departure that incorporates precursor dose-response information without being dependent on the difficult issue of a definition of adversity for precursors. [Description provided by NIOSH]
-
Subjects:
-
Keywords:
-
ISSN:0272-4332
-
Document Type:
-
Genre:
-
Place as Subject:
-
CIO:
-
Division:
-
Topic:
-
Location:
-
Volume:30
-
Issue:7
-
NIOSHTIC Number:nn:20037221
-
Citation:Risk Anal 2010 Jul; 30(7):1037-1051
-
Contact Point Address:C. Eric Hack, AFRL RHPB, 2729 R Street, Building 837, Wright Patterson AFB, OH 45433-5707
-
Email:charles.hack@wpafb.af.mil
-
CAS Registry Number:
-
Federal Fiscal Year:2010
-
Peer Reviewed:True
-
Source Full Name:Risk Analysis
-
Collection(s):
-
Main Document Checksum:urn:sha-512:5c2b98e7644752d7a5e57c258130ce0320887bf31e193f10ab7dd400fca945dd529856c60b461bf623f1b9018f231f2492e210f4995652472676977811fae565
-
Download URL:
-
File Type:
ON THIS PAGE
CDC STACKS serves as an archival repository of CDC-published products including
scientific findings,
journal articles, guidelines, recommendations, or other public health information authored or
co-authored by CDC or funded partners.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
You May Also Like