Welcome to CDC Stacks | Standardizing operational vector sampling techniques for measuring malaria transmission intensity: evaluation of six mosquito collection methods in western Kenya - 13438 | CDC Public Access
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
Help
Clear All Simple Search
Advanced Search
Standardizing operational vector sampling techniques for measuring malaria transmission intensity: evaluation of six mosquito collection methods in western Kenya
  • Published Date:
    Apr 30 2013
  • Source:
    Malar J. 2013; 12:143.
Filetype[PDF - 549.10 KB]


Details:
  • Document Type:
  • Collection(s):
  • Description:
    Background

    Operational vector sampling methods lack standardization, making quantitative comparisons of malaria transmission across different settings difficult. Human landing catch (HLC) is considered the research gold standard for measuring human-mosquito contact, but is unsuitable for large-scale sampling. This study assessed mosquito catch rates of CDC light trap (CDC-LT), Ifakara tent trap (ITT), window exit trap (WET), pot resting trap (PRT), and box resting trap (BRT) relative to HLC in western Kenya to 1) identify appropriate methods for operational sampling in this region, and 2) contribute to a larger, overarching project comparing standardized evaluations of vector trapping methods across multiple countries.

    Methods

    Mosquitoes were collected from June to July 2009 in four districts: Rarieda, Kisumu West, Nyando, and Rachuonyo. In each district, all trapping methods were rotated 10 times through three houses in a 3 × 3 Latin Square design. Anophelines were identified by morphology and females classified as fed or non-fed. Anopheles gambiae s.l. were further identified as Anopheles gambiae s.s. or Anopheles arabiensis by PCR. Relative catch rates were estimated by negative binomial regression.

    Results

    When data were pooled across all four districts, catch rates (relative to HLC indoor) for An. gambiae s.l (95.6% An. arabiensis, 4.4% An. gambiae s.s) were high for HLC outdoor (RR = 1.01), CDC-LT (RR = 1.18), and ITT (RR = 1.39); moderate for WET (RR = 0.52) and PRT outdoor (RR = 0.32); and low for all remaining types of resting traps (PRT indoor, BRT indoor, and BRT outdoor; RR < 0.08 for all). For Anopheles funestus, relative catch rates were high for ITT (RR = 1.21); moderate for HLC outdoor (RR = 0.47), CDC-LT (RR = 0.69), and WET (RR = 0.49); and low for all resting traps (RR < 0.02 for all). At finer geographic scales, however, efficacy of each trap type varied from district to district.

    Conclusions

    ITT, CDC-LT, and WET appear to be effective methods for large-scale vector sampling in western Kenya. Ultimately, choice of collection method for operational surveillance should be driven by trap efficacy and scalability, rather than fine-scale precision with respect to HLC. When compared with recent, similar trap evaluations in Tanzania and Zambia, these data suggest that traps which actively lure host-seeking females will be most useful for surveillance in the face of declining vector densities.