CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners.
As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
i
Genetic characterization of a novel Ehrlichia chaffeensis genotype from an Amblyomma tenellum tick from South Texas, USA
-
9 2022
-
-
Source: Ticks Tick Borne Dis. 13(5):101990
Details:
-
Alternative Title:Ticks Tick Borne Dis
-
Personal Author:
-
Description:Ehrlichia chaffeensis is the causative agent of human monocytotropic ehrlichiosis (HME), a disease that ranges in severity from mild to fatal infection. Ehrlichia chaffeensis is maintained in a zoonotic cycle involving white-tailed deer (Odocoileus virginianus) as the main vertebrate reservoir and lone star ticks (Amblyomma americanum) as its principal vector. Through complete genomic analysis from human ehrlichial isolates and DNA sequences obtained from deer and tick specimens, nine strains of E. chaffeensis have been characterized. Few studies have examined the genetic diversity of E. chaffeensis in ticks, and some of these investigations have identified that the genetic sequences coincide with the circulating strains reported so far. Here, we report the first evidence of E. chaffeensis DNA from an unfed Amblyomma tenellum (formerly Amblyomma imitator) collected in South Texas. We characterized the genetic variation of this E. chaffeensis genotype using conserved gene markers such as rRNA, dsb, and groEL. We also used gene targets useful to distinguish genotypes, such as the variable length PCR target gene (VLPT) and 120-kDa gene, encoding the tandem-repeat proteins TRP32 and TRP120, respectively. Our results suggest a novel E. chaffeensis genotype that exhibited greater variability than other genotypes of E. chaffeensis and highlights the role for A. tenellum as a potential vector of E. chaffeensis.
-
Keywords:
-
Source:
-
Pubmed ID:35763959
-
Pubmed Central ID:PMC9940300
-
Document Type:
-
Funding:
-
Volume:13
-
Issue:5
-
Collection(s):
-
Main Document Checksum:
-
Download URL:
-
File Type: