i
A science impact framework to measure impact beyond journal metrics
-
12 22 2020
-
-
Source: PLoS One. 2020; 15(12)
Details:
-
Alternative Title:PLoS One
-
Personal Author:
-
Description:Measuring the impact of public health science or research is important especially when it comes to health outcomes. Achieving the desired health outcomes take time and may be influenced by several contributors, making attribution of credit to any one entity or effort problematic. Here we offer a science impact framework (SIF) for tracing and linking public health science to events and/or actions with recognized impact beyond journal metrics. The SIF was modeled on the Institute of Medicine's (IOM) Degrees of Impact Thermometer, but differs in that SIF is not incremental, not chronological, and has expanded scope. The SIF recognizes five domains of influence: disseminating science, creating awareness, catalyzing action, effecting change and shaping the future (scope differs from IOM). For public health, the goal is to achieve one or more specific health outcomes. What is unique about this framework is that the focus is not just on the projected impact or outcome but rather the effects that are occurring in real time with the recognition that the measurement field is complex, and it takes time for the ultimate outcome to occur. The SIF is flexible and can be tailored to measure the impact of any scientific effort: from complex initiatives to individual publications. The SIF may be used to measure impact prospectively of an ongoing or new body of work (e.g., research, guidelines and recommendations, or technology) and retrospectively of completed and disseminated work, through linking of events using indicators that are known and have been used for measuring impact. Additionally, linking events offers an approach to both tell our story and also acknowledge other players in the chain of events. The value added by science can easily be relayed to the scientific community, policy makers and the public.
-
Subjects:
-
Source:
-
Pubmed ID:33351845
-
Pubmed Central ID:PMC7755179
-
Document Type:
-
Volume:15
-
Issue:12
-
Collection(s):
-
Main Document Checksum:
-
Download URL:
-
File Type: