Assessing flammable storage cabinets as sources of VOC exposure in laboratories using real-time direct reading wireless detectors
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners. As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
i

Assessing flammable storage cabinets as sources of VOC exposure in laboratories using real-time direct reading wireless detectors

Filetype[PDF-748.32 KB]


English

Details:

  • Alternative Title:
    J Chem Health Saf
  • Personal Author:
  • Description:
    Herein we present the results of measurements using wireless direct-reading photoionization detector-based gas sensors to quantify concentrations of vapors of volatile organic compounds (VOCs) in and around flammable storage cabinets containing common organic solvents, including acetone, dichloromethane, trichloroethylene, and benzene. Such cabinets are commonly employed in laboratories to contain flammable liquids. A sensor array was deployed in a series of flammable storage cabinets in working laboratories. Measurements in cabinets containing bottles of typical solvents demonstrate that vapor concentrations gradually increase upon closing the cabinet door. The results suggest that these storage units can be a source of vapors of VOCs in laboratories and the unnecessary exposure of laboratory workers to chemical vapors. Ventilation of cabinets tended to lower maximum concentrations of VOCs. However, the efficacy of this engineering control was found to depend on the quality of the cabinet door seal, as well as having debris-free flame arrestors. Opening cabinet doors resulted in release of vapors to the laboratory atmosphere, which represents an unnecessary exposure risk for workers. A countermeasure aimed at improving the seal of previously opened solvent bottles reduced measured concentrations of VOCs in cabinets below the detector's limit of detection.
  • Subjects:
  • Source:
  • Pubmed ID:
    34136018
  • Pubmed Central ID:
    PMC8205438
  • Document Type:
  • Funding:
  • Volume:
    25
  • Issue:
    5
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at stacks.cdc.gov