The theory of flammability limits : flow gradient effects and flame stretch
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

The theory of flammability limits : flow gradient effects and flame stretch

Filetype[PDF-1.70 MB]


English

Details:

  • Personal Author:
  • Corporate Authors:
  • Description:
    "In this Bureau of Mines study, an equation is derived for the limit burning velocity for divergent, spherical propagation from an ignition kernel of radium, r:(su)e=2a/r pu/pb. For flame propagation into a preexisting, stretching velocity gradient of magnitude dv/dx, the limit velocity is (su)e=(a dv/dx)1/2. These formulations are shown to be equivalent to the fluid dynamic concepts of damkohler, karlovitz, and markstein. Existing data for the blowoff limits of flames are shown to give excellent agreement with those concepts provided that proper account is taken of two dilution effects: composition dilution caused by entrainment and velocity gradient dilution caused by flow expansion. Approximate flow-field solutions are also derived for the unburned gas motion above an upward propagating, spherical flame kernel in buoyancy- induced flows. It is shown that the upward hemisphere propagates toward a stagnation plane in a counterflow configuration involving the balance between the combustion force, which accelerates the cold gas upward, and the buoyancy force that accelerates the cold gas downward. The position of the stagnation plane above the upward propagating hemisphere is related to the ratio of the buoyant velocity, VB, to the burning velocity, su." - NIOSHTIC-2

    NIOSH no. 10004135

  • Subjects:
  • Series:
  • Document Type:
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at stacks.cdc.gov