Performance of a polyurethane core seal tested in a hydrostatic chamber
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners. As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
i

Performance of a polyurethane core seal tested in a hydrostatic chamber

Filetype[PDF-2.89 MB]


English

Details:

  • Personal Author:
  • Corporate Authors:
  • Description:
    "The National Institute for Occupational Safety and Health's Pittsburgh Research Laboratory conducted a full-scale test of a composite polyurethane-aggregate seal in a hydrostatic chamber at the Lake Lynn Experimental Mine. This composite seal consisted of a polyurethane and limestone aggregate core that was formed between two concrete block walls. In the hydrostatic chamber test, water is used to pressurize the seal. During the test, the maximum average water pressure the seal was able to withstand was 18.9 psi. Further, the seal began to yield at an average water pressure of only 17 psi. At the time of the test, the minimum seal design requirement was 20 psi under 30 CFR4 75.335 (2005). Therefore, based on this test, the seal did not meet the regulatory minimum design requirement. Uniaxial compressive tests conducted on samples from the polyurethane-aggregate core revealed that both the compressive strength and the elastic modulus of the material were much less than that for polyurethane only with a density of 10.0-12.0 lb/ft3. The significant reduction in the strength and stiffness of the polyurethane-aggregate mixture results from the formation of a soft polyurethane foam around each piece of aggregate. The formation of the soft foam seems to be caused by residual moisture from the aggregate. The moisture also caused the density of the polyurethane in the polyurethane-aggregate mixture to be less than the design requirements. The lower density of the polyurethane in the mixture, along with the formation of zones of pure polyurethane only, resulted in the overall seal density being less than the design requirements. During seal construction, steps were taken to control the moisture, but were not successful. An analysis of the seal failure showed that the calculated shear stresses at failure and the estimated shear strength of the polyurethane-aggregate mixture are fairly close. This suggests that the strength properties of the polyurethane-aggregate mixture along with a weak zone of poorly bonded aggregate controlled the maximum pressure the seal could withstand. At the time of the seal testing, the minimum design requirement was 20 psi, as specified at 30 CFR 75.335 (2005). New emergency temporary standards for seal designs were promulgated on May 22, 2007, with a minimum requirement of 50 psi under specified conditions. However, it will be shown that the evaluation of the polyurethane seal performance as designed to meet the older 20-psi criterion can be relevant to the design requirements under the new standards." - p. [1]
  • Subjects:
  • Series:
  • Subseries:
  • DOI:
  • Document Type:
  • Genre:
  • Pages in Document:
    38 numbered pages
  • NIOSHTIC Number:
    20033877
  • Resource Number:
    DHHS (NIOSH) Publication No. 2008-129; RI-9674
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at stacks.cdc.gov