The Fate of Metal (Fe) During Diesel Combustion: Morphology, Chemistry, and Formation Pathways of Nanoparticles
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

The Fate of Metal (Fe) During Diesel Combustion: Morphology, Chemistry, and Formation Pathways of Nanoparticles

Filetype[PDF-1.50 MB]



Details:

  • Description:
    This report describes an investigation in which we used iron-doped diesel fuel to generate metal-bearing diesel particles and a subsequent analysis of the particles using transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). For this study, DPM was generated by a 1.5-L diesel engine and the fuel was doped with ferrocene to enhance the level of iron in the system. The exhaust particles were collected on TEM grids and analyzed using the Philips CM12 TEM/EDS instrument. Results show that when the iron-to-carbon (soot) ratio (Fe/C) in the engine is low, the exhaust particles have morphologies similar to those for the undoped case, but at a threshold Fe/C value of 0.013 (for this engine), homogeneously nucleated metallic nanoparticles are formed and begin agglomerating. The number and size of these nanoparticles increase with level of doping. Metal-bearing particles that span a wider size range are also formed. Agglomeration of metallic and carbon particles is observed in two distinct modes: attachment of iron primary particles (5-10 nm in diameter) to carbon agglomerates, and coagulation of iron agglomerates (20-200 nm in diameter) with carbon agglomerates. Results of this work imply that as new engine technologies reduce soot levels in the engine and/or levels of trace metals in the fuel are increased, the generation of metallic nanoparticles may ensue, creating a potential health concern. Keywords: Nanoparticles; Particulate emissions; Metallic particles; Metal emissions
  • Subject:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at stacks.cdc.gov