Work-Principle Model for Predicting Toxic Fumes of Nonideal Explosives
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Work-Principle Model for Predicting Toxic Fumes of Nonideal Explosives

Filetype[PDF-919.62 KB]


  • Personal Author:
  • Description:
    The work-principle from thermodynamics was used to formulate a model for predicting toxic fumes from mining explosives in underground chamber tests, where rapid turbulent combustion within the surrounding air noticeably changes the resulting concentrations. Two model constants were required to help characterize the reaction zone undergoing rapid chemical transformations in conjunction with heat transfer and work output: a stoichiometry mixing fraction and a reaction-quenching temperature. Rudimentary theory with an unsteady uniform concentration gradient was taken to characterize the combustion zone, yielding 75% for the mixing fraction. Four quenching temperature trends were resolved and compared to test results of ammonium nitrate compositions with different fuel-oil percentages (ANFO). The quenching temperature 2345 K was the optimum choice for fitting the two major components of fume toxicity: carbon monoxide (CO) and total nitrogen oxides (NOx). The resulting two-constant model was used to generate comparisons for test results of ANFO compositions with additives. Though respectable fits were usually found, charge formulations which reacted weakly could not be resolved numerically. The work-principle model yields toxic concentrations for a range of charge formulations, making it a useful tool for investigating the potential hazard of released fumes and reducing the risk of unwanted incidents. Keywords: Toxicity; Fumes; Explosives
  • Subjects:
  • Collection(s):
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at