Pumpable Roof Supports: Developing Design Criteria By Measurement Of The Ground Reaction Curve
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Pumpable Roof Supports: Developing Design Criteria By Measurement Of The Ground Reaction Curve

  • 2003

  • Source: Proceedings of the 22nd International Conference on Ground Control in Mining, August 5-7, 2003, Morgantown, West Virginia. Peng SS, Mark C, Khair AW, Heasley KA, eds., Morgantown, WV: West Virginia University, 2003 Aug; :283-294
Filetype[PDF-669.67 KB]

  • English

  • Details:

    • Description:
      Pumpable roof supports provide an alternative longwall tailgate roof support and have grown in usage during the past few years. Heintzmann Corporation has been installing pumpable roof supports at the RAG Resources Emerald Mine in western PA since 1998, where they have provided effective roof control in their longwall tailgates. Despite the success of these supports in this application, questions remain regarding critical design issues for optimizing the use of this support technology. The support loading profile is characterized by a high initial stiffness with peak loading occurring at less than one inch of convergence, followed by significant load shedding with a post failure capacity comparable to that of wood cribbing. Therefore, the key to optimizing the support utilization is to provide sufficient load density to prevent convergence from occurring beyond the peak loading capacity. This requires an understanding of how the supports interact with the ground conditions, hence measurement of the ground reaction curve. In order to obtain this information, pumpable roof supports were instrumented to measure support loading. Roof deformation and roof-to-floor convergence measurements in the vicinity of the instrumented supports were also made. The experimental parameters for the installation were the support spacing and water-to-solids ratio of the grout, which controls the grout strength and ultimately the maximum capacity of the support. The study clearly shows that at this mine a 24-inch diameter support is fully capable of providing adequate ground control under depths of cover of 750 ft as only 50 pct of the available support capacity was utilized outby the longwall face. It was also shown that the 2.00 to 1 water-solids ratio, despite providing a slightly softer support response, is sufficient for maintaining the same degree of roof control provided by the traditional 1.75 to 1 grout mix. The 10-ft spacing of the supports did not cause any ground control problems outby the face. However, inby the face the performance of the support is degraded once the peak capacity of the supports is exceeded. It appears that the large load shedding behavior, which is characteristic of this support following peak loading, allows the immediate roof to separate. When this happens, the support is unable to regain control of the roof in time to prevent failure of the immediate roof beam.
    • Subject:
    • Document Type:
    • Main Document Checksum:
    • File Type:

    Supporting Files

    • No Additional Files

    More +

    You May Also Like

    Checkout today's featured content at stacks.cdc.gov