Numerical Analysis Of The Influence Of In-Seam Horizontal Methane Drainage Boreholes On Longwall Face Emission Rates
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Numerical Analysis Of The Influence Of In-Seam Horizontal Methane Drainage Boreholes On Longwall Face Emission Rates

Filetype[PDF-1.19 MB]


  • Description:
    High methane emissions originating from the active face areas and from the fractured formations overlying and underlying the mined coalbed can adversely affect both safety and productivity in underground coal mines. Since ventilation alone may not be sufficient to control the methane levels in the longwall mining environment, gob gas ventholes have become a standard supplementary methane control option in many mines. As mines progress into deeper and gassier coalbeds, or as longwall panel size increases, ventilation and gob gas ventholes together may not be sufficient to maintain methane levels within statutory limits. To decrease the risk associated with methane emissions under these circumstances, in-seam horizontal methane drainage is often used to reduce the gas content of the coalbed prior to mining. Horizontal methane drainage borehole completion designs, drilling strategies, and degasification lead times may need to be adjusted for site-specific conditions due to mine design, geology, and the gas content of the coalbed. This study investigates different horizontal methane drainage borehole patterns, borehole lengths, and degasification times prior to and during panel extraction to evaluate their effectiveness in reducing methane emissions using a "dynamic" 3D reservoir modeling of a 38 1-m wide longwall panel operating in the Pittsburgh coalbed. Results of this study showed that dual and tri-lateral boreholes are more effective in decreasing emissions and in shielding the entries compared to fewer shorter, cross-panel, horizontal boreholes parallel to the longwall face. Modeling results showed that after 12 months of pre-mining methane drainage, the average longwall face emission rates can be reduced by as much as 10.3 m3/min and 6.8 m3/min using tri- and dual-lateral boreholes, respectively. It was also shown that if pre-mining methane drainage time is short, it is important to continue methane drainage during the panel extraction to maximize reductions in longwall face emissions since additional face emission reductions achieved during this period can be comparable to pre-mining degasification.
  • Subject:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at