Development Of Numerical Models To Investigate Permeability Changes And Gas Emission Around Longwall Mining Panel
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Development Of Numerical Models To Investigate Permeability Changes And Gas Emission Around Longwall Mining Panel

Filetype[PDF-393.42 KB]



Details:

  • Description:
    Underground longwall mining of coal causes large scale disturbance of the surrounding rock mass. The disturbance can increase the rock mass permeability through a reduction on the stress as well as formation of new fractures in the rock. Methane gas contained in the disturbed rock mass can migrate towards the low pressure mine workings and present an explosion hazard. This paper describes the application of a finite difference program to develop a geomechanical model that predicts permeability changes within the rock mass. The calculated permeabilities are used as input to a reservoir simulator that models methane desorption from the coal matrix, methane release from the rock layers and flow towards the mine excavations. The model also considers the basic characteristics of the mine ventilation network. The geomechanical model uses empirical relationships between fracture permeability and stress to calculate permeability changes around a longwall face. The extent of rock failure is determined using a strain softening model that considers both rock matrix and bedding plane failure. The cave rock (gob) is modeled as a compressible, granulated material. The calculated horizontal and vertical permeabilities around the longwall face are averaged and used as one of the inputs to the reservoir model. The reservoir model was developed and calibrated against records of methane flow at a study mine in southwestern Pennsylvania. Good correlation between actual gas production and model outputs has been achieved. The modeling approach provides a basis for estimating methane inflow and optimizing control measures.
  • Subjects:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at stacks.cdc.gov